Uni Münster Med. Fakultaet
IoB
NEWS
2024-06-13
"Application of a new data management system to the study of the gut microbiome of children who are small for their gestational age" by Manske et al. has been uploaded to bioRxiv.
View
2024-06-07
"Interplay of miR-542, miR-126, miR-143 and miR-26b with PI3K-Akt is a Diagnostic Signal and Putative Regulatory Target in HPV-Positive Cervical Cancer" by Akram Rahimi-Moghaddam, Nassim Ghorbanmehr, Sedigheh Gharbi, Fatemeh Nili and Eberhard Korsching has been published by Biochemical Genetics
View
2024-02
NewickTreeModifier: a simple web page to prune and modify Newick trees
View
2023-08-28
"The complete sequence of a human Y chromosomeā€¯ by T2T Consortium has been published by Nature
View
2022-10-28
"The new uORFdb: integrating literature, sequence, and variation data in a central hub for uORF research" by Felix Manske, Lynn Ogoniak, Norbert Grundmann and Wojciech Makalowski has been published by Nucleic Acids Research.
View
2022-07-08
"A Map of 3' DNA Transduction Variants Mediated by Non-LTR Retroelements on 3202 Human Genomes" by Reza Halabian and Wojciech Makalowski has been published by Biology.
View
2022-06
"paPAML: An Improved Computational Tool to Explore Selection Pressure on Protein-Coding Sequences" by Lynn Ogoniak, Norbert Grundmann and others
View
2022-05-14
"Mobilome of Apicomplexa Parasites" by Rodriguez and Makalowski has been published by Genes.
View
2022-04-27
"Software evaluation for de novo detection of transposons" by Rodriguez and Makalowski has been published by Mobile DNA.
View
2022-04-01
"From telomere to telomere: The transcriptional and epigenetic state of human repeat elements" by T2T consortium has been published by Science.
Goto
2022-02-12
"Global research alliance in infectious disease: a collaborative effort to combat infectious diseases through dissemination of portable sequencing" by GRAID consortium that IoB is part of has been published by BMC Research Notes.
Goto
Visualizing Sequence Similarity of Protein Families

Classification of proteins into families is one of the main goals of functional analysis. Proteins are usually assigned to a family on the basis of the presence of family-specific patterns, domains, or structural elements. Whereas proteins belonging to the same family are generally similar to each other, the extent of similarity varies widely across families. Some families are characterized by short, well-defined motifs, whereas others contain longer, less-specific motifs. We present a simple method for visualizing such differences. We applied our method to the Arabidopsis thaliana families listed at The Arabidopsis Information Resource (TAIR) Web site and for 76% of the nontrivial families (families with more than one member), our method identifies simple similarity measures that are necessary and sufficient to cluster members of the family together. Our visualization method can be used as part of an annotation pipeline to identify potentially incorrectly defined families. We also describe how our method can be extended to identify novel families and to assign unclassified proteins into known families.

One result of our work is the discovery that, despite the wide variety of methods used in the construction of protein families, 76% of all analyzed Arabidopsis thaliana families are fully clusterable by the proposed simple parameter schemes. Our results also show relationships between families that shar/ members, and help identify potentially incorrect family assignments. We also show how our results could be used to identify novel families and assign unclassified proteins to known families.

Reference: Veeramachaneni V. and Makalowski W. (2004) Visualizing sequence similarity of protein families. Genome Research, 14 (6): 1160-1169.[Reprint]
2018-11-15 11:50