How T2T Human Genome Assembly Enables Better Understanding of the Human Mobiliome

May 2001; 11 (5)

\triangle INSIGHT/OUTLOOK

Are We Polyploids? A Brief History of One Hypothesis Wojciech Makałowski
Genome Res.May 1, 2001 11: 667-670; doi:10.1101/gr. 188801 "Extract \geqslant Full Text $»$ Full Text (PDF)

Complete DNA Sequence of Lactococcus lactis Adds Flavor to Genomics

Oscar P. Kuipers
Genome Res. May 1, 2001 11: 673-674; doi:10.1101/gr. 188501
"Extract »Full Text »Full Text (PDF)

\qquad

\triangle REPORT

Identification and Characterization of the Potential Promoter Regions of 1031 Kinds of Human Genes
Yutaka Suzuki, Tatşuhiko Tsunoda, Jun Sese, Hirotoshi Taira,
Junko Mizushima-Sugano, Hiroko Hata, Toshio Ota, Takao Isogai, Toshihiro Tanaka, Yusuke Nakamura, Akira Suyama, Yoshiyuki Sakaki, Shinichi Morishita, Kousaku Okubo, and Sumio Sugano
Genome Res. May 1, 2001 11: 677-684; Published in Advance April 11, 2001, doi:10.1101/gr. 164001
" Abstract " Full Text "Full Text (PDF)

May 2001; 11 (5)

Telomere-to-Telomere

- The human genome is finally finished from T to T !
- Technology development: first 92% took 10 years, last 8\% took 20 years
- Solved with combination of PacBio HiFi + ONT ultra-long

nature

Explore content $\checkmark \quad$ About the journal $\vee \quad$ Publish with us \checkmark

nature > articles > article

Article | Published: 23 August 2023
The complete sequence of a human Y chromosome

The slide courtesy of Adam Phillippy, NHGRI, NIH

The last 8\% of the human genome

The last 8\% of the human genome

What's there? Repeats!

-Centromeres

- Telomeres
- Segmental duplications
-Tandem gene arrays
- Acrocentric p-arms

Centromer/Satellite
156.2

Novel bases (Mbp)

From telomere to telomere: The transcriptional and epigenetic state of human repeat elements

Savannah J. Hoyt	Jessica M. Storer	Gabrielle A. Hartley Patrick G. S. Grady	
Ariel Gershman	Leonardo G. de Lima	Charles Limouse	Reza Halabian
Luke Wojenski	Matias Rodriguez	Nicolas Altemose	Arang Rhie
Leighton J. Core	Jennifer L. Gerton	Wojciech Makalowski	Daniel Olson
Jeb Rosen	Arian F. A. Smit	Aaron F. Straight	Mitchell R. Vollger
Travis J. Wheeler	Michael C. Schatz	Evan E. Eichler	Adam M. Phillippy
Winston Timp	Karen H. Miga	Rachel J. O'Neill	

Complete human repeat annotations and discovery

TE annotation is more refined for CHM13v1. 1

	CHM13v1.1		GRCh38 (excluding Y)	
Repeat class	Mbp	\% of assembly	Mbp	\% of assembly
LTR	269.91	8.83	267.52	9.15
LINE	631.64	20.68	626.33	21.43
SINE	394.72	12.93	390.78	13.38
DNA	109.34	3.58	108.53	3.71
Total	$\mathbf{1 4 0 5 . 6 1}$	$\mathbf{4 6 . 0 2}$	$\mathbf{1 3 9 3 . 1 6}$	$\mathbf{4 7 . 6 7}$

TE annotation on chromosome Y

Repeat class	T2T-Y	GRCh38-Y	Difference (\%)
LTR	$4,613,537$	$4,604,368$	0.2
LINE	$6,456,888$	$6,378,323$	1.2
SINE	$4,404,417$	$2,643,856$	67.1
DNA	$4,387,030$	$2,626,425$	67.0
Total	$\mathbf{1 9 , 8 6 1 , 8 7 2}$	$\mathbf{1 6 , 2 5 2 , 9 7 2}$	$\mathbf{2 2 . 2}$

L1 transposons

5' UTR ORF 1		ORF 2	3' UTR	
TSD	EN	RT	C	polyA=

Full length human element is about 6 kb long while it is 7 kb long in mice

Two open reading frames

982,161 copies in the human genome (CHM13 assembly) 80,000 copies in the mouse genome (10% of the mass)

Pol II transcription

Pol II promotor

Transcription
termination signal

Pol II-transcribed gene

polyA signal
primary transcript
primary transcript
primary transcript
polyA

L1 transcription

Pol II promotor
Transcription termination signal

L1 element

polyA signal
primary L1 transcript
primary L1 transcript
primary L1 transcript
polyA

L1 transcription

Pol II promotor

Weak transcription termination signal

Strong transcription termination signal

L1 element

polyA signal
primary L1 transcript
primary L1 transcript
primary L1 transcript
extra RNA
polyA

L1-driven DNA transduction

Pol II promotor

Weak transcription termination signal

Strong transcription termination signal

L1 element
transcription

L1 transcript	extra RNA	polyA
reverse transcription		
L1 element	extra DNA	poly A

L1 element

There are two other active transposons in humans

SVA

Left monomer
Alu

	A_{n}
A_{n}	
A box B boxA-rich connector	polyA stretch

Right monomer

A box B box

A-rich
onnector
~300 nt long
Originated in 7SL RNA $1,205,661$ copies in the
CHM13 version 2 assembly

Composite element over 1 kb long
7,380 copies in the CHM13 version 2 assembly

There are two other active transposons in humans

Left monomer
Alu

A box B box | A-rich |
| :---: |
| connector |\quad polyA stretch

~300 nt long
Originated in 7SL RNA $1,205,661$ copies in the
CHM13 version 2 assembly

SGCTCT	əY!!-n\|V	VNTR	SINE-R	A_{n}

Do they drive transductions as well?

Transduction events are found genome wide in T2T-CHM13

What about Alu elements?

WaluSat Repeat

Alu monomer revisited: recent generation of Alu monomers

Kenji K Kojima

PMID: 20713470 DOI: 10.1093/molbev/msq218

Abstract

Alu is a predominant short interspersed element (SINE) family in the human genome and consists of two monomer units connected by an A-rich linker. At present, dimeric Alu elements are active in humans, but Alu monomers are present as fossilized sequences. A comparative genome analysis of human and chimpanzee genomes revealed eight recent insertions of Alu monomers. One of them was a retroposed product of another Alu monomer with 3' transduction. Further analysis of 1,404 loci of the Alu monomer in the human genome revealed that some Alu monomers were recently generated by recombination between the internal and 3' A-rich tracts inside of dimeric Alu elements. The data show that Alu monomers were generated by 1) retroposition of other Alu monomers and 2) recombination between two A-rich tracts.

Alu-driven DNA transductions

BIOINFORMATICS CREED

Remember about biology
Do not trust the data
Use comparative approach
Use statistics
Know the limits
b_{B}
Remember about biology!!!

Alu transcription by polymerase III

Pol II promotor
Transcription
termination signal

Pol II-transcribed gene

polyA signal

Alu transcription by polymerase III

Alu-mediated DNA transductions

	Detected items
Full-length AluYs	118,489
AluYs with TSD	118,489
Potential AluYs with transduction signatures including polyA upstream of 3' TSD	4978
Potential AluYs with transduction signatures not overlapping with other TEs	742
Verified transductions*	24

transd_seq_offspring	terminator_info
aaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaataaa	(401, 406, 'ttttt')
aataaaataaaataaaataaataaaataaaataaaattaaattaaattaaattaaataaataaaataaaataaaataaaa	(5, 10, 'ttTTT')
aagaaggaaagaaaggaagaaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaaga	(135, 139, 'tttt')
taagaaagaaagaaaaagagaaagaaagagagaaagagagaaagagagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaa	(308, 313, 'ttttt')
aataaaataaaataaaataaaataaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaa	(62, 66, 'tttt')
acagacagaaagaaagacagacagaaagaaagacagacaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagagaaagagaaaagaa	(53, 57, 'tttt')
aagaaagaaagagagaaagaaagaaagaaagaaagagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaaga	(68, 72, 'ТТТ')
aagaaaagaaaagaaaagaaagaaggaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagagaaagaagaaagaaagaaagaaaga	(869, 873, 'tttt')
gaaagaaagaaaggaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaaggaaggaaggaagg	(461, 465, 'tttt')
aaagaaggaaggaaggaaaggaaggaaggaaggaaggaaggaaggaaggaaggaaaaaagaaagaaagaaagaaaa	(110, 114, 'TTT')
aacataacataacataacataacataacataacataacataacataacataacataaactaaactaaac	(130, 135, 'tttt')
aaagaaagaaagaaagaaagaaagaaagaaagaaagaaaggaaggaaagagagagagagagagaaagaaagaaagaaaaagaaagaaagaaagaaaaagaa	(224, 228, 'tttt')
aaagaaagaaagaaagaaagaaagagaaagaaagaaagaaagagagagaaagagagagagagagagagagagaaagagagagagagaggga	(252, 256, 'TTT')
gaaagaaagagagagagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaa	(92, 96, 'tttt')
gaaagaaagaaagaaagagagagagagagacagagagagagaaagaaagaaagagagagagagagaaagaaagaaagaaagaagaaagaagaaagaagaaagaaaga	(125, 129, 'ТТТ')
ggaaggaaggaaggagagagagagagaaagaaagaaagagaaagaagaaaaaaagaaagaaagaaaaaaga	(183, 187, 'tttt')
aagaaagaaagaaagagagagagagagagagagagagagagagagagagaaagaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaag	(85, 89, 'tttt')
aaataaattaaattaaattaaaataaataaaaataaaataaaitaaaataaataaataaaaaataaa	(472, 476, 'TाT')
aaaataaataaaataaatataaaataaataaaataaaataaataaaataaaataataaaataaaa	(171, 175, 'tttt')
	(71, 75, 'ТПТ')
aaaataaaataaaattaaaataataaaataaaatataaaataaaataaaataaaataaaataaaataaaataaaatataaaataaaataaaataaataaaataaaataaaataaaat	(100, 104, 'tttt')
aaaataaaataaaataaaataaaataaaataaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataa	(54, 58, 'tttt')
aaaataaaataaaataaaataaaaataaaataaaataaataaaataaaataaaataatataaaaataaaat	(52, 57, 'tttt')
aaataaataaaataaaataaataaaataaaataaaataaataaaataaaataaataataaaataaaataa	(374, 381, 'ТПТПТ')

transd_seq_offspring	terminator_info
aaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaataaa	(401, 406, 'ttttt')
aataaaataaaataaaataaataaaataaaataaaattaaattaaattaaattaaataaataaaataaaataaaataaaa	($5,10, ~ ' t t T T ')$
aagaaggaaagaaaggaagaaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaga	(135, 139, 'tttt')
taagaaagaaagaaaaagagaaagaaagagagaaagagagaaagagagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaa	(308, 313, 'ttttt')
aataaaataaaataaaataaaataaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaa	(62, 66, 'tttt')
acagacagaaagaaagacagacagaaagaaagacagacaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaəgaà raagaaagaaagaaagagaaagagaaaagaa	(53, 57, 'tttt')
aagaaagaaagagagaaagaaagaaagaaagaaagagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaag a raaacraagaaagaaga	(68, 72, 'TТТ')
	(869, 873, 'tttt')
gaaagaaagaaaggaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaaggaaggaaggaagr	(461, 465, 'tttt')
aaagaaggaaggaaggaaaggaaggaaggaaggaaggaaggaaggaaggaaggaaaaaagaaagaaagaaaga	(110, 114, 'Tाए')
aacataacataacataacataacataacataacataacataacataacataacataaactaaactaaac	(130, 135, 'ttttt')
	(224, 228, 'tttt')
aaagaaagaaagaagaaagaaagagaagaaagaaagaaagagagagaaagagagagaga vge aga agaaagagagagagagaggga	(252, 256, 'TTTT')
	(92, 96, 'tttt')
gaaagaaagaaagaaagagagagagagagacagagagagagaaagaaagaaaga agagaga agaaagaaagaaagaaagaagaaagaaagaaagaaagaaagaaaga	(125, 129, 'TTT')
ggaaggaaggaaggagagagagagagaaagaaagaaagagaaagaaar aat aag a agaaaaaga	(183, 187, 'tttt')
aagaaagaaagaaagagagagagagagagagagagagagagagaga ga agu aaagaaagaaagaaagaaagaaagaaagaaagaagaaagaaagaaag	(85, 89, 'tttt')
aaataaaattaaattaaattaaaataaaataaaaaataaaataaà raaa ama vataaaaaaataaa	(472, 476, 'T1T')
	(171, 175, 'tttt')
aagaaagaaagaaagagagagagaaagaaagaaagaaagagagas gagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaagaaag	(71, 75, 'TTT')
aaaataaaataaaattaaaataataaaataaaatataaaataaaataaaataaaataaaataaaataaaataaaatataaaataaaataaaataaataaaataaaataaaataaaat	(100, 104, 'tttt')
aaaataaaataaaataaaataaaataaaataaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataaaataa	(54, 58, 'tttt')
aaaataaaataaaataaaataaaaataaaataaaataaataaaataaaataaaataatataaaaataaaat	(52, 57, 'ttttt')
aaataaataaaataaaataaataaaataaaataaaataaataaaataaaataaaataataaaataaaataa	(374, 381, 'ТПППT')

Team T2T
 (...and many more)

