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Genome	scale	sequence	analyses
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CENTRAL DOGMA OF 
MOLECULAR BIOLOGY

Protein

RNA

DNA

transcription

translation

CCTGAGCCAACTATTGATGAA

PEPTIDE

CCUGAGCCAACUAUUGAUGAA
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CHALLENGE: HOW 
FROM THIS…

TGCATCGATCGTAGCTAGCTAGCGCATGCTAGCTAGCTAGCTAGCTACGATGCATCG 
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG 
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG 
CGCGCGCATTATGCCGCGGCATGCTGCGCACACACAGTACTATAGCATTAGTAAAAA 
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGCGCGTAGCTAGTGCTAGCTAGTC 
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT 
AGCTAGTGTAGCTAGCTAGCATGCTGCTAGCATGCAGCATGCATCGGGCGCGATGCT 
GCTAGCGCTGCTAGCTAGCTAGCTAGCTAGGCGCTAATTATTTATTTTGGGGGGTTA 
AAAAAAAAAATTTCGCTGCTTATACCCCCCCCCACATGATGATCGTTAGTAGCTACT 
AGCTCTCATCGCGCGGGGGGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC 
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT 
AAAGACCCCATCTCTCTCTCTTTTCCCTTCTCTCGCTAGCGGGCGGTACGATTTACC 
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGCGCGTAGCTAGTGCTAGCTAGTC 
AGCTCTCATCGCGCGGGGGGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC 
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG 
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT 
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG 
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT
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Infer	this
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GENOME ANNOTATION

What are we looking for? 

 protein coding genes 

 RNA coding genes 

 gene promoters 

 repetitive elements
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GENE IDENTIFICATION 
METHODS

Molecular techniques 

Very laborious 

Time consuming 

Expensive 

Low rate of false positives 

Computational methods 

Fast 

Relatively low cost 

High rate of false positives 

Poor performance on less 
typical genes
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GENERAL MODEL OF 
A GENE

8

EUKARYOTIC GENE 
STRUCTURE

9

NESTED GENES

10

OVERLAPPING GENES
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PSEUDOGENES AND 
REPETITIVE ELEMENTS
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GENE FINDING 
METHODS

model based
based on 

similarity to 
known genes

multi-genome 
approach

sequence 
composition signals transcripts proteins conservation

coding/non-
coding sequence 
discrimination

homology based
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MODEL BASED 
METHODS

We take advantage of what we already learned about gene 
structures and features of coding sequences. Based on this 
knowledge we can build theoretical model, develop an 
algorithm to search for important features, train it on known 
data and use to search for coding sequences in anonymous 
genomic fragments. 

However, we should remember that all  
models are wrong and only some are  
useful. 
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GENERAL MODEL OF 
A GENE
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START
CODON STOP

START STARTSTARTSTART STOPSTOP STOP STOP

SEQUENCE CODING 
POTENTIAL
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CODON USAGE
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SEQUENCE FEATURES

We can check if sequence in particular 
ORF has some other features which could 
tell us if this is a putative coding sequence 
or the ORF is false positive. We can look 
at the sequence content and compare it 
with known coding sequence and non-
coding sequence and check to which of 
these two the ORF sequence is more 
similar to.
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HIDDEN MARKOV 
MODELS

HHM is a statistical model for an ordered sequence of symbols, acting as a 
stochastic state machine that generates a symbol each time a transition is 
made from one state to the next. Transitions between states are specified 
by transition probabilities.  A Markov process is a process that moves from 
state to state depending on the previous n states.  

HHM has been previously used very successfully for speech recognition. 
In biology is used to produce multiple sequence alignments, in generating 
sequence profiles, to analyze sequence composition and patterns, to 
produce a protein structure prediction, and to locate genes. 

In gene identification HMM is a model of periodic patterns in a sequence, 
representing, for example, patterns found in the exons of a gene. HMM 
provides a measure of how close the data pattern in the sequence resemble 
the data used to train the model. 
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MARKOV CHAINS

A Markov Chain is a non-deterministic system in which it is assumed 
that the probability of moving from one state to another doesn’t vary 
with time. This means the current state and transition does not depend 
on what happened in the past. The Markov Chain is defined by 
probabilities for each occurring transition.
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MARKOV CHAINS

In a sequence analysis we 
look at probabilities of 
transitions from one 

nucleotide to another. We 
can check, for example, if 
certain patterns of transition 
are more frequent in coding 
sequences than in non 
coding sequences.
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ORDER OF MARKOV 
CHAINS
GCGCTAGCGCCGATCATCTACTCG	

GCGCTAGCGCCGATCATCTACTCG	
GCGCTAGCGCCGATCATCTACTCG	

GCGCTAGCGCCGATCATCTACTCG	
GCGCTAGCGCCGATCATCTACTCG	

GCGCTAGCGCCGATCATCTACTCG	
GCGCTAGCGCCGATCATCTACTCG

First order

Fifth order

Second order
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HOW FAR CAN WE GO?

 Order of our model will have influence on specificity and sensitivity 
of our program.  

Too short sequences may not be specific enough and program 
may return a lot of false positives.  

Long chains may be too specific and our program will not be 
sensitive enough returning false negatives.
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ORDER OF MARKOV 
CHAINS
GCGCTAGCGCCGATCATCTACTCG	

GCGCTAGCGCCGATCATCTACTCG	
GCGCTAGCGCCGATCATCTACTCG	

GCGCTAGCGCCGATCATCTACTCG	
GCGCTAGCGCCGATCATCTACTCG	

GCGCTAGCGCCGATCATCTACTCG	
GCGCTAGCGCCGATCATCTACTCG

First order

Fifth order

Second order

20  G 
7 GA 
1 GG 
5 GT 
7 GC

7/20 
1/20 
5/20 
7/20

For non-coding sequence  we assume 
that probability of each transition is 
equal.  The more ‘popular’ in coding 
sequence transition, the higher 
probability the sequence is coding

24
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Probability matrix
Number of probabilities in a DNA matrix of a given order 
can be calculated according to the following formula: 

                                      4k+1 

where 4 represents number of letters in the DNA alphabet 
and k stands for the order number. 

Hence, first order Markov Model matrix consists of 42 = 16 
probabilities 

p(A/A), p(A/T), p(A/C), p(A/G),  
p(T/A), p(T/T), p(T/C), p(T/G),  
p(C/A), p(C/T), p(C/C), p(C/G),  

p(G/A), p(G/T), p(G/C), p(G/G)
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GCG		CTA		GCG		CCG		ATC		ATC		TAC		TCG	

G		CGC		TAG		CGC		CGA		TCA		TCT		ACT		CG	

GC		GCT		AGC		GCC		GAT		CAT		CTA		CTC		G

Frequencies of transitions may depend 
on in which codon position (1st, 2nd, or 

3rd) is a given nucleotide (state)
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Number	of	probabili2es

41+1  = 42 = 16
3 (41+1)= 3 x 42 = 48
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CALCULATING CODING POTENTIAL 
OF A GIVEN SEQUENCE

To estimate if the sequence is coding we have to calculate probability 
that sequence is coding and probability the sequence is non-coding. Next 
we calculate logarithm from the ratio of these two probability values.

If the calculated value is > 0 the likelihood that the sequence is coding 
is higher than the sequence is not coding, if value is < 0 there is higher 
likelihood that sequence is not coding.

LP(S) = log 
Pi (S) ________ 
P0 (S)
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A/A  C/A  G/A  T/A coding 
0.36  0.21  0.19  0.24 

A/A  C/A  G/A  T/A  non coding 
0.25  0.25  0.25  0.25

CODING VS. NON 
CODING SEQUENCE

29

* in the case of first position in the analyzed sequence we put 
the frequency of a particular letter in the analyzed genome

*
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CALCULATING LP
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GLIMMER

Gene finding program for prokaryotes (Saltzberg et. al, 
1998) 

For prediction uses: 

Start 

Stop 

Sequence composition 

Interpolated Markov Models
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PROKARYOTIC VS. 
EUKARYOTIC GENES

Prokaryotes 
– small	genomes	
– high	gene	density	
– no	introns	(or	

splicing)	
– no	RNA	processing	
– similar	promoters	
– terminators	

important	
– overlapping	genes

Eukaryotes 
– large	genomes	
– low	gene	density	
– introns	(splicing)	
– RNA	processing	
– heterogeneous	

promoters	
– terminators	not	

important	
– overlapping	genes	
– polyadenyla@on
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CODING REGIONS IN 
PROKARYOTES

34

EUKARYOTIC GENE 
STRUCTURE
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SEARCHING FOR CODING 
SEQUENCES USING MARKOV CHAINS

In this case we do not want check if given sequence fragment is coding 
or not but we rather want to identify coding fragments in a long 
sequence. In most cases this is done by calculating statistics in 
overlapping windows. 

AGTACGATATTAGCGGCAATCGTATGACTACGTCTTGCTACGTCTTCTCTCGTCTGCTCTAG

This example shows a profile for a 
sequence analyzed using a 120-bp 
window and a 10-bp step.

36
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CODON USAGE

37

CODON USAGE
DNA sequence can be divided into non-overlapping codons in 

three reading frames 

C = C1C2...Cm
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PROBABILITY THAT 
SEQUENCE IS CODING

Probability that sequence is coding is equal probability that 
sequence of codons is coding. Assuming independence 
between adjacent codons the probability that sequence is 
coding will be equal to the product of codon frequencies.
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PROBABILITY THAT SEQUENCE 
IS  NON-CODING

If the sequence is non-coding the codon frequency will be 
random and each codon will be equally probable. In this case 
frequency for each codon will be 0.0156. This is because we 
have 64 codons and each of them is equally likely. 

Therefore probability that the sequence is non-coding will be:

P(C) = F(AGG)F(AGC) = 0.0156 x 0.0156 = 

0.000244
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LOG-LIKELIHOOD RATIO
To determine if the sequence is more likely coding or non-coding we can 
use log-likelihood ratio:

LP(S) = log 
Pi (S) ________ 
P0 (S)

In our example (AGGAGC) 

LP(S) = log 
Pi (S) ________ 
P0 (S)

0.000836 ________ 
0.000234

= log = log 3.57 = 0.55 

Conclusion: AGGAGC string is more likely to be protein coding
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Codon usage

Markov models

42
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RULE BASED METHODS

Minimal 
length ORF

Splicing 
sites

Codon 
usage

Putative 
exons
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GENE IDENTIFICATION 
PROGRAMS
The first generation of programs was designed to identify approximate locations 
of coding regions in genomic DNA (e.g. GRAIL). These methods could not 
accurately predict precise exon location. 

The second generation (e.g. MZEF, SORFIND, and Xpound) combined splice 
signals and coding region identification but did not attempt to assemble 
predicted exons into complete genes. 

Third generation (GeneID, GeneParser, GenLang,FGENES) predicted entire 
gene structures but their performance was rather poor. One of problems was the 
assumption that the input sequence contains complete genes. 

Fourth generation of programs is represented by GENSCAN or TWINSCAN.  
With improved accuracy and less restricted requirements (e.g. allow partial 
genes) these programs are considered to be the best and are widely used in 
large-scale genomes analysis.
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CLASSES OF GENE 
PREDICTION METHODS

Sequence similarity based
BLAST can be used for aligning ESTs or proteins to the genomic sequence 
PROCRUSTES and GenWise use global alignment of homologous protein to 
genomic sequence 
The biggest limitation to this type of approaches: 

only about half of genes being discovered have significant similarity to 
genes in the database  
genes with very limited expression may never be discovered

Limitations of these approaches:  
Newly sequenced genomes very often lack large enough samples of 
known genes  to estimate model parameters 
Need to be retrained as the number of available genes is growing 
Genes of less typical structure or having rare signals may not be 
discovered

Model based

45

GENSCAN
Burge, C. and Karlin, S. (1997) Prediction of 
complete gene structures in human genomic 
DNA.  J. Mol. Biol.   268,  78-94.  
Search for general and specific compositional 
properties of distinct functional units in 
eukaryotic genes 
General fifth-order Markov model of coding 
regions 
Analyzes both DNA strands 
Sequences may contain multiple and/or partial 
genes 
http://genes.mit.edu/GENSCAN
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E0 E1 E2

I0 I1 I2

Einit Eterm

Single 
exon 
gene

5’ UTR 3’ UTR

Poly A 
Signal

promoter

Intergenic 
region

5’ UTR 3’ UTR

G T AG

Each state corresponds to one of the seven 
categories with which all nucleotides are 
ultimately labeled- promoter, 5’UTR, 
exon, intron, 3’UTR, PolyA, intergenic 

Three components:  
Transition model – specifies probability of 
moving from any one state to another 
  Duration model – specifies the 
probablity of staying in a given state 

  State specific sequence models – 
specifies the probability of any given 
nucleotide sequence being generated from 
any given state
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Sensitivity  Fraction of actual coding regions that are 
correctly predicted as coding, ranging from 0 to 1   

Sn  = TP/(TP+FN) 

Specificity  Fraction of the prediction that is actually correct, 
ranging from 0 to 1 

      Sp  = TP/(TP+FP) 

Correlation  Combined measure of sensitivity and specificity, 
ranging from -1 (always wrong) to +1 (always right)

Evaluation statistics

TP TPF
P FN TN

TP - true positive 
FP - false positive 
FN - false negative 
TN - true negative
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PREDICTION PROGRAMS 
PERFORMANCE

37 genes were tested, 16 of them (43%) were confirmed. At the exon 
level 159 exons were predicted and 58 (36%) were found to be real.

predicted exons specificity sensitivity

MZEF 34 0.51 0.56

GRAIL 11 0.48 0.19

GENSCAN 52 0.46 0.91

FGENES 45 0.37 0.75
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PROBLEMS RELATED TO GENE 
PREDICTION - GENE STRUCTURE 
AND ALTERNATIVE SPLICING

I. Makalowska et al. Gene 284: 203-213
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RepeatMasker

http://www.repeatmasker.org/
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GENE FINDING 
METHODS

model based
based on 

similarity to 
known genes

multi-genome 
approach

sequence 
composition signals transcripts proteins conservation

coding/non-
coding sequence 
discrimination

homology based
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GENE FINDING 
STRATEGIES

Search for conserved regions 

Presence of ORF 

Codon usage 

Splice sites 

Polyadenylation signal 

Similarity search 

Presence of regulatory elements
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WHY IS PROMOTER 
PREDICTION DIFFICULT?

Not a one single type of core promoter 

Promoter needs additional regulatory elements 

Transcription may be activated or repressed by many 
regulatory proteins 

Transcriptional activators and repressors act very 
specifically both in terms of the cell type and point in the 
cell cycle 

Not all regulatory factors have been characterized

54
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PROKARYOTIC 
PROMOTER PREDICTION

NNNTTGACANNNNNNNNNNNNNNNNTATAATNNNNNATGcccccc

RNA start site

-10 region-35 region

Most bacterial promoters contain: 

The Pribnow box, at about -10bp from the start codon there is 
consensus sequence: 5'-TATAAT-3' 

The -35 sequence, centered about -35bp  from the start codon 
there is consensus sequence: 5'-TTGACA
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E.COLI PROMOTERS

Promoters sequences can vary tremendously. 

RNA polymerase in eukaryotes recognizes hundreds of different 
promoters
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MARKOV MODELING - AGAIN

A C A - - - A T G  
T C A A C T A T C 
A C A C - - A G C 
A G A - - - A T C 
A C C G - - A T C
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EUKARYOTIC PROMOTERS
Three types of RNA polymerase (I, II, III), each binding to various 
kinds of promoters 
Polymerase II transcribes genes coding for proteins 
Core Promoter - most have TATA box that is centered around position 
-25 and has the consensus sequence: 5'-TATAAAA-3' 
Several promoters have a CAAT box around -90 with the consensus 
sequence: 5'-GGCCAATCT-3' 
promoters for "housekeeping" genes contain multiple copies of a GC-
rich element that includes the sequence 5'-GGGCGG-3' 
Proximal Promoter Regions - transcription factor binding regions 
within ~200 bp of the Core Promoter 
Enhancers - transcription factor binding regions that can act to 
regulate transcription from the core promoter even from many 
kilobases away from the core promoter
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EUKARYOTIC PROMOTERS

Nature 424, 147-151
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CISTER : CIS-ELEMENT 
CLUSTER FINDER

Detects cis-elements clusters by using Hidden Markov Model 
For each element uses separate matrix with frequencies of 
each nucleotide in each position; user can input matrix for 
elements not included in the basic option 
User can specify: 

distance between neighboring cis-elements within a 
cluster 
number of cis-elements in the cluster 

distance between clusters 
half-width of the sliding window

60
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EXAMPLE OF MATRIX

Sequences of experimentally identified elements are aligned 

and frequencies in each position are calculated
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EXAMPLE OF MATRIX

TGTGGT 
TGCGGT 
TGTGGT 
AGTGGT 
TGTGGC

Sequences of experimentally identified elements are aligned 

and frequencies in each position are calculated

NA   AML-1a 
XX 
DE   runt-factor AML-1 
XX 
BF   T02256; AML1a; Species: human, Homo sapiens. 
XX 
P0      A      C      G      T 
01      1      0      0      4      T 
02      0      0      5      0      G 
03      0      1      0      4      T 
04      0      0      5      0      G 
05      0      0      5      0      G 
06      0      1      0      4      T

P1 P2 P3 P4 P5 P6
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HTTP://ZLAB.BU.EDU/
~MFRITH/CISTER.SHTML
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GENE EXPRESSION 
ANALYSIS - MICROARRAY
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GENE EXPRESSION ANALYSIS 
- NCBI REPOSITORY
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USE OF RNASeq

Task Sequencing 
approach Technique

Measuring of 
gene expression

36 bp single-end 
reads (tags counting) 

RNASeq,  
small RNASeq

Measuring of 
gene interactions

36 bp single-end 
reads (tags counting) 

RIP Seq 
CLIP Seq

Genome 
annotation 

100 nt paired-end 
reads (sequence 
determinations)

RNASeq

Alternative 
splicing analysis

100 nt paired-end 
reads (sequence 
determinations)

RNASeq
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69 70
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73 74
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BIOINFORMATICS 
CREED

Remember about biology 

Do not trust the data 

Use comparative approach 

Use statistics 

Know the limits 

Remember about biology!!!
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