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CHALLENGE: HOW
FROM THIS...

TGCATCGATCGTAGCTAGCTAGCGCATGCTAGCTAGCTAGCTAGCTACGATGCATCG
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG
CGCGCGCATTATGCCGCGGCATGCTGCGCACACACAGTACTATAGCATTAGTAAAAA
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGCGCGTAGCTAGTGCTAGCTAGTC
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT
AGCTAGTGTAGCTAGCTAGCATGCTGCTAGCATGCAGCATGCATCGGGCGCGATGCT
GCTAGCGCTGCTAGCTAGCTAGCTAGCTAGGCGCTAATTATTTATTTTGGGGGGTTA
AAAAAAAAAATTTCGCTGCTTATACCCCCCCCCACATGATGATCGTTAGTAGCTACT
AGCTCTCATCGCGCGGGGGGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT
AAAGACCCCATCTCTCTCTCTTTTCCCTTCTCTCGCTAGCGGGCGGTACGATTTACC
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGCGCGTAGCTAGTGCTAGCTAGTC
AGCTCTCATCGCGCGGGGGGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT

fm{'\ ’EP) DNA CCTGAGCCAACTATTGATGAA
transcription
RNA CCUGAGCCAACUAUUGAUGAA
|
translation
Protein PEPTIDE
3

GENOME ANNOTATION

What are we looking for?
-®- protein coding genes
-® RNA coding genes
- gene promoters

-® repetitive elements
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GENE IDENTIFICATION
METHODS

» Molecular techniques o Computational methods

e Very laborious o Fast

» Time consuming » Relatively low cost

* Expensive ° High rate of false positives

» Low rate of false positives ® Poor performance on less

typical genes
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GENERAL MODEL OF
A GENE

INTERGENIC CODING
REGION ‘ START SEQUENCE STOR

EUKARYOTIC GENE
STRUCTURE

(exon-intron-exon), structure of various genes

histone
e

total = 400 bp; exon = 400 bp
p-globin ——{ —{} I}

total = 1,660 bp; exons = 990 bp
HGPRT i
(HPRT)

total = 42,830 bp; exons = 1263 bp

factor VIl -} i -—

total = ~186,000 bp; exons = ~9,000 bp
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OVERLAPPING GENES
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PSEUDOGENES AND
REPETITIVE ELEMENTS

(a) Escherichia coli
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GENE FINDING
METHODS

coding/non-
coding sequence homology based
discrimination
based on multi-genome
model based similarity to a ;goach
known genes PP
sequence signals transcripts proteins conservation
composition

MODEL BASED
METHODS

We take advantage of what we already learned about gene
structures and features of coding sequences. Based on this
knowledge we can build theoretical model, develop an
algorithm to search for important features, train it on known
data and use to search for coding sequences in anonymous

genomic fragments.

However, we should remember that all
models are wrong and only some are

useful.
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GENERAL MODEL OF
A GENE

INTERGENIC CODING
REGION ‘ START SEQUENCE STOF

SEQUENCE CODING
POTENTIAL

[Tls{a]ste]

STOP

—[]s{2]sf3]

START
CODON
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CODON USAGE

Codon preference in £ cafand & Srésesargenss.

SEQUENCE FEATURES

U c A G We can check if sequence in particular

T e e T T e e e OREF has some other features which could

UUA | Lew | 11 | UCA | Ser 6 | vaa|sTor| 2 |uca|stor| o8| A 1 1Q 1 - 1

UUG [ Lew 12 uce Ser 8 UAG | STOP 02| UGG Trp 2 |G tell us lf thls. 1S a putatl."-e COdlng Sequence
ST EET N ET RN B N E R N or the ORF is false positive. We can look

EA RN KV IR YV N E RN at the sequence content and compare it
LY N IR T 2 N P RS e with known coding sequence and non-

won || [ ack | me o [ Ak | o | a0 | aca| we | s |A coding sequence and check to which of

AUG Met 26 ACG Thr 15 AAG Lys 12 AGG Arg 1 G .
G [ow [ v | o [oco | mn | o [omo| ax | o [cou] o | 2 [U these two the ORF sequence is more

Soa Lo | i Lo e o [ o [oa oo | similar to.

GUG Val 26 GCG Ala 37 GAG Glw 20 GGG Gly 10 G
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HIDDEN MARKOV
MODELS

° HHM is a statistical model for an ordered sequence of symbols, acting as a
stochastic state machine that generates a symbol each time a transition is
made from one state to the next. Transitions between states are specified
by transition probabilities. A Markov process is a process that moves from
state to state depending on the previous n states.

»

HHM has been previously used very successfully for speech recognition.

J

In biology is used to produce multiple sequence alignments, in generating
sequence profiles, to analyze sequence composition and patterns, to
produce a protein structure prediction, and to locate genes.

* In gene identification HMM is a model of periodic patterns in a sequence,
representing, for example, patterns found in the exons of a gene. HMM
provides a measure of how close the data pattern in the sequence resemble
the data used to train the model.

MARKOV CHAINS

A Markov Chain is a non-deterministic system in which it is assumed
that the probability of moving from one state to another doesn’t vary
with time. This means the current state and transition does not depend
on what happened in the past. The Markov Chain is defined by

probabilities for each occurring transition.

19
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MARKOV CHAINS

In a sequence analysis we
look at probabilities of
transitions from one
nucleotide to another. We
can check, for example, if
certain patterns of transition
are more frequent in coding

sequences than in non

coding sequences. S——

ORDER OF MARKOV
CHAINS

GCGCTAGCGCCGATCATCTACTCG

GCGCTAGCGCCGATCATCTACTCG

GCGCTAGCGCCGATCATCTACTCG First order

GCGCTAGCGCCGATCATCTACTCG
GCGCTAGCGCCGATCATCTACTCG

Second order

GCGCTAGCGCCGATCATCTACTCG
GCGCTAGCGCCGATCATCTACTCG

Fifth order

21
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HOW FAR CAN WE GO?

+#- Order of our model will have influence on specificity and sensitivity
of our program.

-#Too short sequences may not be specific enough and program
may return a lot of false positives.

ORDER OF MARKOV
CHAINS

GCGCTAGCGCCGATCATCTACTCG

GCGCTAGCGCCGATCATCTACTCG
GCGCTAGCGCCGATCATCTACTCG

First order

GCGCTAGCGCCGATCATCTACTCG
GCGCTAGCGCCGATCATCTACTCG

Second order

GCGCTAGCGCCGATCATCTACTCG

GCGCTAGCGCCGATCATCTACTCG Fifth order
* Long ?hains may be toolspeciﬁc and our program will not be - For non-coding sequence we assume
sensitive enough returning false negatives. 7GA  7/20 that probability of each transition is
1GG 1/20 equal. The more ‘popular’ in coding
5GT 5/20 sequence transition, the higher
7GC 720 probability the sequence is coding
23 24
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Probability matrix

Number of probabilities in a DNA matrix of a given order
can be calculated according to the following formula:

4k+1
where 4 represents number of letters in the DNA alphabet
and k stands for the order number.
Hence, first order Markov Model matrix consists of 42 = 16
probabilities
p(A/A), p(A/T), p(A/C), p(A/G),
p(T/A), p(T/T), p(T/C), p(T/G),
p(C/A), p(C/T), p(C/C), p(C/G),
p(G/A), p(G/T), p(G/C), p(G/G)

GCG CTA GCG CCG ATC ATC TAC TCG
G CGC TAG CGC CGA TCA TCT ACT CG

GC GCT AGC GCC GAT CAT CTA CTC G

Frequencies of transitions may depend
on in which codon position (1st, 2nd, or
3rd) is a given nucleotide (state)

25
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Number of probabilities

Codon position 1 Codon position 2 Codon position 3

ACGT ACGT ACGT

A .36 .27 .35 .18 A .16 .19 .15 .07 A .22 33 24 13

C .21 .23 .24 27 C .28 .44 41 33 C 21.29 27 .21

G .19 .14 23 23 G .40 .12 .27 45 G .44 .15 37 .53

T .24 .35.19 31 T .16 .25 .17 .16 T .13 .22 .12 .13
411 = 42=16

3(4'")=3x4*=48

CALCULATING CODING POTENTIAL
OF A GIVEN SEQUENCE

To estimate if the sequence is coding we have to calculate probability
that sequence is coding and probability the sequence is non-coding. Next
we calculate logarithm from the ratio of these two probability values.

Pi(S)

LP(S) = log P7(3)

If the calculated value is > 0 the likelihood that the sequence is coding
is higher than the sequence is not coding, if value is < o there is higher
likelihood that sequence is not coding.

27 28

CODING VS. NON i
_ P(S Codon position 1 Codon position 2 Codon position 3
CODING SEQUENCE LP(9)=log IS ey e
P&S) A 36 .27 .35 .18 A .16 .19 .15 .07 A 22 33 24 13
C .21 .23 24 27 C .28 44 41 33 c 2129 27 .21
G .19 .14 23 23 G .40 .12 .27 45 G .44 15 37 53
S=AGGACG T .24 35 .19 31 T .16 .25 .17 .16 T 13 .22 12 a3

A/A C/A G/A T/A coding
0.36 0.21 0.19 0.24

AIA C/A G/A T/A non coding
0.25 0.25 0.25 0.25

P(S) —f(A,15F(G.A)F(G.G)F(A.G)F(C,AF(G.C)
P(S) =027 x 0.19x 0.27 x 0.24 x 0.21 x 0.12 = 0.00008377
P(S)=0.25x 0.25 x 0.25 x 0.25 x 0.25 x 0.25 =0.0002441

LP(S) = 10g(0.00008377/0.0002441) = -0.4644

* in the case of first position in the analyzed sequence we put
the frequency of a particular letter in the analyzed genome

29
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CALCULATING LP GLIMMER

LP(S) = log P i(sl Codon position 1 Codon position 2 Codon position 3 » Gene finding program for prokaryotes (Saltzberg et. al,
P‘{S) A 36 .27 35 a8 A .16 .19 .15 .07 A 22 33 24 a3 1998)
S=AGGACG snmnnocoiunocanin * For prediction uses:
o Start
LP(S) = 10922+ 10gQ19 4 109027 4 105024 , 4021 , |0 0.12
025 2025 025 9025 °025 °025 « Stop

LP(S) = log 1.08 + log 0.76 + log 1.08 + log 0.96 + log 0.84 + log 0.48 ..
» Sequence composition

LP(S) = 0.0334 + (-0.1191) +0.0334 + (-0.0177) + (-0.0757) + (-0.3187)
o Interpolated Markov Models

LP(S) = -0.4644

31 32

PROKARYOTIC VS. CODING REGIONS IN
EUKARYOTIC GENES PROKARYOTES

Prokaryotes Eukaryotes
—  small genomes — large genomes
—  high gene density —  low gene density
— nointrons (or — introns (splicin
roinwo spicing)
plicing —  RNA processing
— no RNA processing —  heterogeneous
—  similar promoters promoters
—  terminators —  terminators not
important important
J .
P overlapping genes —  overlapping genes
ﬁ —  polyadenylation
33 34

EUKARYOTIC GENE SEARCHING FOR CODING
STRUCTURE SEQUENCES USING MARKOV CHAINS

In this case we do not want check if given sequence fragment is coding
or not but we rather want to identify coding fragments in a long
sequence. In most cases this is done by calculating statistics in

Exonl Exon2 Exon3 E xon4 R .
DNA overlapping windows.

Intron 1 Intron2 Intron 3

AGTACGATATTAGCGGCAATCGTATGACTACGTCTTGCTACGTCTTCTCTCGTCTGCTCTAG

] T 7T :

Promotfer Splicesite  Splice site Pyrimidine polyA signal
TATA GGTGAG CAG tract i .
o .. This example shows a profile for a
Translation Branchpoint ~ Stop codon .
"
Initiation CrGAC TAGTGATAA sequence analyzed using a 120-bp
ATG .
% window and a 10-bp step.
-
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CODON USAGE

CODON USAGE

DNA sequence can be divided into non-overlapping codons in

Gly GGG 17.08 0.23 Arg AGG 12.09 0.22 .
Gly GGA 19.31 0.26 Arg AGA 11.73 0.21 three reading frames
Gly GGT 13.66 0.18 Ser AGT 10.18 0.14
24. . s AGC 18.54 0.25
Gly GGC 4.94 0.33 er C=Ci1C2..Cm
Glu GAG 38.82 0.59 Lys ARG 33.79 0.60
Glu GAA 27.51 0.41 Lys ARR 22.32 0.40 [ —
Asp GAT 21.45 0.44 Asn AAT 16.43 0.44 1
asp GAC  27.06  0.56 asn aaC 21.30 0.56 ( - AGG AGG ACG GGA TCA
Val GTG 28.60 0.48 Met ATG 21.86 1.00 Q
val GTA 6.09 0.10 Ile ATA 6.05 0.14 G A CGG GAT
val GTT 10.30 0.17 Ile ATT 15.03 0.35
Vval GTC 15.01 0.25 Ile ATC 22.47 0.52 GAC GGG ATC
Ala GCG 7.27 0.10 Thr ACG 6.80 0.12 - _______N
Ala GCA 15.50 0.22 Thr ACA 15.04 0.27 ) ) ]
Ala GCT 20.23 0.28 Thr ACT 13.24 0.23 C = :G(JA C :G(IG
Ala Gee 28.43 0.40 Thr ACC 21.52 0.38 1 1

PROBABILITY THAT
SEQUENCE IS CODING

Probability that sequence is coding is equal probability that
sequence of codons is coding. Assuming independence
between adjacent codons the probability that sequence is
coding will be equal to the product of codon frequencies.

0.038
K5 o T
oo o

GAC 666 ATC

PROBABILITY THAT SEQUENCE
IS NON-CODING

If the sequence is non-coding the codon frequency will be
random and each codon will be equally probable. In this case
frequency for each codon will be 0.0156. This is because we
have 64 codons and each of them is equally likely.

Therefore probability that the sequence is non-coding will be:

P(C) = F(AGG)F(AGC) = 0.0156 X 0.0156 =

0.000244
F(AGG)F(ACG) = 0.022 x 0.038 =0.000836
39 40
LOG-LIKELIHOOD RATIO Codon usage
To determine if the sequence is more likely coding or non-coding we can B ===
use log-likelihood ratio: " MaI‘kOV mOdels
P (S) i
LP(S) =1 - »
(8)=log —— *‘/u\ Al /'—\’\u—»’ .
In our example (AGGAGC) J: :
Pi(S) 0.000836 N
LP(S) = log =log =log 3.57 =0.55
Po (S) 0.000234

Conclusion: AGGAGC string is more likely to be protein coding

41
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RULE BASED METHODS

Minimal Codon
length ORF usage

NN

Splicing
sites exons

Putative

GENE IDENTIFICATION
PROGRAMS

-#The first generation of programs was designed to identify approximate locations
of coding regions in genomic DNA (e.g. GRAIL). These methods could not
accurately predict precise exon location.

+®The second generation (e.g. MZEF, SORFIND, and Xpound) combined splice
signals and coding region identification but did not attempt to assemble

predicted exons into complete genes.

+&Third generation (GenelID, GeneParser, GenLang, FGENES) predicted entire
gene structures but their performance was rather poor. One of problems was the
assumption that the input sequence contains complete genes.

- Fourth generation of programs is represented by GENSCAN or TWINSCAN.
With improved accuracy and less restricted requirements (e.g. allow partial

genes) these programs are considered to be the best and are widely used in
large-scale genomes analysis.

43
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CLASSES OF GENE
PREDICTION METHODS

Sequence similarity based
- BLAST can be used for aligning ESTs or proteins to the genomic sequence
- PROCRUSTES and GenWise use global alignment of homologous protein to
genomic sequence
-#- The biggest limitation to this type of approaches:
-2 only about half of genes being discovered have significant similarity to
genes in the database
% genes with very limited expression may never be discovered

Model based
+®* Limitations of these approaches:
-# Newly sequenced genomes very often lack large enough samples of
known genes to estimate model parameters
-2 Need to be retrained as the number of available genes is growing
+® Genes of less typical structure or having rare signals may not be

GENSCAN

-®  Burge, C. and Karlin, S. (1997) Prediction of
complete gene structures in human genomic
DNA. J. Mol. Biol. 268, 78-94.

@ Search for general and specific compositional

properties of distinct functional units in

eukaryotic genes

General fifth-order Markov model of coding

regions

Analyzes both DNA strands

Sequences may contain multiple and/or partial

genes 2

http://genes.mit.edu/GENSCAN

ro

discovered
45 46
5 UTR FUTR Evaluation statistics
/\/ Bx Tin1 | Ex -lnz n3 na

Each state corresponds to one of the seven “h"
categories with which all nucleotides are

ultimately labeled- promoter, 5’UTR,

exon, intron, 3’UTR, PolyA, intergenic

Three components:

Einil Eierm
Transition model — specifies probability of \
moving from any one state to another .
Single

Duration model — specifies the exon
probablity of staying in a given state gene

State specific sequence models — t Poly A
specifies the probability of any given promoter s:;ia,
nucleotide sequence being generated from N

any given state Intergenic

region

TP - true positive Specificity Fraction of the prediction that is actually correct,
FP - false positive

FN - false negative
TN - true negative

™ FN TN | TP

3
P
Sensitivity Fraction of actual coding regions that are

correctly predicted as coding, ranging from o to 1
Sn = TP/(TP+FN)

ranging from o to 1
Sp = TP/(TP+FP)

Correlation Combined measure of sensitivity and specificity,
ranging from -1 (always wrong) to +1 (always right)

C_TP x TN + FPx FN
(PP)(PN)(AP)(AN)

47
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PREDICTION PROGRAMS
PERFORMANCE

PROBLEMS RELATED TO GENE
PREDICTION - GENE STRUCTURE
AND ALTERNATIVE SPLICING

A 1 2 3
| GM117-predicted & form A

37 genes were tested, 16 of them (43%) were confirmed. At the exon 588§ emii7roms
level 159 exons were predicted and 58 (36%) were found to be real. B1 2 3 4 5 s 78 g
0—O—~0—0 0 —{+—[] GM121-precicted
Lé*gagé & I N E GM121doned
predicted exons  specificity sensitivity ¢ & emizr-predced
éié GM127-doned
D
MZEF 34 0.51 0.56 5 Zn;ua GM140-predicted
D—E|1 . _|3 GM140-doned
GRAIL 11 0.48 0.19
E 1 2 3 4 5
] IO ] GM148-predicted
GENSCAN 52 0.46 0.91 5 234 5 e conoa o A
é. 234 _‘&:_M GM148-doned form B
B —— T | i
FGENES 45 0.37 0.75 ; e
=] a0 ] GM148-doned fom C
1. Makalowska et al. Gene 284: 203-213

RepeatMasker

Biology RepeatMasker Web Server

Hubley & P. G Current Version: open-33.0 ( RMLIb: 20110920)

Selecta s o paste the.
queued, and may iake a while o process.

Search Engine: (& abblast () rmblast () cross_match

SpesdSensitivity: O rush © quick © default O slow

select “Other.” and enter a

Return Format: ~ © himl ) tar e hami

Sies.

The "HTML" return method

¥ The "email”
your results are ready.

http://www.repeatmasker.org/

coding/non-
coding sequence homology based
discrimination
based on multi-genome
model based similarity to 3
K approach
nown genes
sequence . . . .
composition s1gnals transcripts proteins conservation
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GENE FINDING
STRATEGIES

-®-Search for conserved regions
-®Presence of ORF

-®-Codon usage

-#-Splice sites
-®-Polyadenylation signal
-&Similarity search

-®Presence of regulatory elements

-#- Not a one single type of core promoter
»- Promoter needs additional regulatory elements

& Transcription may be activated or repressed by many

-®- Transcriptional activators and repressors act very

+®* Not all regulatory factors have been characterized

WHY IS PROMOTER
PREDICTION DIFFICULT?

regulatory proteins

specifically both in terms of the cell type and point in the
cell cycle

53
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PROKARYOTIC
PROMOTER PREDICTION

-® Most bacterial promoters contain:

-#- The Pribnow box, at about -10bp from the start codon there is

consensus sequence: 5'-TATAAT-3'

-# The -35 sequence, centered about -35bp from the start codon

there is consensus sequence: 5'-TTGACA

NNNTTGACANNNNNNNNNNNNNNNNTATAATNNNNNATGccccce
-35 region -10 region 1

RNA start site

E.COLI PROMOTERS

(b) Strong £ coli promalers

IyriANA  TCTCAACGTAACACTTTACAGCGGCG. CGTCATTTGATATGATGC-GCCCCECTTCCCGATAAGGG
01 GATCAAAAAAATACTTGTGCAAAAAA = » TTGGGATCCCTATAATGCGGCTGCEB T TGAGACGACAACG
rrn X1 ATGCATTTTTCCGCTTATCTTCCTGA - * GCCGACTCCCTATAATGCGCCTCCATCGACACGGCGGA T
rn (DXE); GCTGAAATTCAGGGTTGACTCTGAAA » » GAGGAAAGGGTAATATAC GCCACBTCGCGACAGTGAGC
rmE1 CTGCAATTTTTCTATTGCGGCCTGCG * GAGAACTCCCTATAATGCGCCTCCATCGACACGGCGGAT
n A1 TTTTAAATTTCCTCTTGTCAGGCCGG TATAATGCGGCACCA ACGGAACAA
ren A2 GCAAAAATAAATGCTTGACTCTGTAG TATTATGC+ACACCE CGCTGAGAA

APR TAACAGCCGTGCGTATTGACTATTTTACOT GATAATGGs » TTGCA TAAGGAGEGT

AP TATCTCTGGCGGTGTTGACATAAATA « CCACTGGCGGTGATACTG A+ + GCACATCAGCAGGACGCAC

T7 A3 GTGAAACAAAACGGTTGACAACATGA » AGTAAACACGGTACGATGT*» ACCACATGAAACGACAGTGA

T7 At TATCAAAAAGAGTATTGACTTAAAGT - CTAACCTATAGGATACTTA+CAGCCATCGAGAGGGACACG

T7 A2 ACGAAAAACAGGTATTGACAACATGAAGTAACATGCAGTAAGATAC AAATCECTAGGTAACACTAG

1dvin GATACAAATCTCCGTTGTACTTTGTT - - TCGCGCTTGGTATAATCG- CTGGGAGTCAAAGATGAGTG
as 10 +1

Promoters sequences can vary tremendously.

RNA polymerase in eukaryotes recognizes hundreds of different

promoters

55
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MARKOV MODELING - AGAIN

a ATG

T ATC

a acc

a ATC

a ATC
A_IY A e — A 2 A
Tm2 T T — T

EUKARYOTIC PROMOTERS

-2 Three types of RNA polymerase (1, II, III), each binding to various
kinds of promoters

#- Polymerase II transcribes genes coding for proteins

& Core Promoter - most have TATA box that is centered around position
-25 and has the consensus sequence: 5'-TATAAAA-3'

& Several promoters have a CAAT box around -9o with the consensus
sequence: 5'-GGCCAATCT-3'

& promoters for "housekeeping” genes contain multiple copies of a GC-
rich element that includes the sequence 5'-GGGCGG-3'

»- Proximal Promoter Regions - transcription factor binding regions
within ~200 bp of the Core Promoter

»- Enhancers - transcription factor binding regions that can act to
regulate transcription from the core promoter even from many
kilobases away from the core promoter

57
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EUKARYOTIC PROMOTERS

a [_’
4 jlencer J__UAS__ Jrouy TATA NP AT DI DINNAD

Core promoter +

Distal
Sorbrasasara] ephancer oo nsulator e
of o

Upstream

) Downstream
+1

Proximal promoter
elements Core promoter

Nature 424, 147-151

CISTER : CIS-ELEMENT
CLUSTER FINDER

-® Detects cis-elements clusters by using Hidden Markov Model

-®- For each element uses separate matrix with frequencies of
each nucleotide in each position; user can input matrix for
elements not included in the basic option

-®- User can specify:
-®- distance between neighboring cis-elements within a
cluster

-® number of cis-elements in the cluster
-®- distance between clusters
-® half-width of the sliding window

59
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EXAMPLE OF MATRIX

AML-1a
runt-factor AML-1

T02256; AMLla;

Species:

human, Homo

Sequences of experimentally identified elements are aligned

and frequencies in each position are calculated

EXAMPLE OF MATRIX

Sequences of experimentally identified elements are aligned

and frequencies in each position are calculated

P1P2P3 P4 P5P6 NA

TGTGGT
TGCGGT B 102256; AMLla; Species: human, Homo sapiens.
TGTGGT v oA
AGTGGT 02
TGTGGC 05

AML-la

runt-factor AML-1

coococor
Hoor oo
ocumuwouwo @
poOOBOBRH
Ho @H oH
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HTTP://ZLAB.BU.EDU/
~MFRITH/CISTER.SHTML

Cister : Cis-element Cluster Finder

Instructions

Paste a DNA sequence into the box or enter a GenBank identifier:

OR upload a DNA sequence from a file: Browse.
(Optional) Set subsequence From: To

Choose a bunch of cis-¢lements:

TATA Spl () CRE R] NE:1 E2F () Mef2 () Myf
CCAAT () AP-1 () Eis Myc () GATA ()LSF () SRE Tef

AND / OR enter your own cis-elements:

(Get cis-clement matrices from - free registration required)

AND / OR upload cis-elements from a file: Browse.

GENE EXPRESSION
ANALYSIS - MICROARRAY

DNA clones test reference excitation
~
A laser 1 laser 2
I e
reverse \%
transcription

label with
fluor dyex

&s&t Fq

emission

PCR amplification
purification

robotic
printing __cefs

. mm

compuler
analysls

hybridize target
to microarray
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GENE EXPRESSION ANALYSIS
- NCBI REPOSITORY

S NCBI  Resources (%) How To @) Sign in to NCBI

GEO Home | Documentation v | Query &Browse v | Email GEO

Gene Expression Omnibus

GEO's

Array-and

gene expression profies.

Getting Started
Overview

FAQ

About GEO DataSels
About GEO Profies
About GEO2R Analysis
How to Construct a Query

How to Download Data

Information for Submitters

Loginto Suomit

ided to help users query.

Tools

Search for Studies at GEO DataSets

Search for Gene Expression at GEO Profiles
Search GEO Documentation

Analyze a Study with GEOZR

GEO BLAST

Programmatic Access

FTPSite

Submission Guidelines

Update Guidelines

Browse Content
Repository Browser
DataSets:

Series: ()

Platforms:

Samples:

MIAME Standards
Citing and Linking to GEO
Guidelines for Reviewers

GEO Publications

3048
2532
15124
1616773

Soarch

“Next Generation” Sequencers

Total read Read Run time FUT) Gosi
length length (day)
Roche GS FLX+ 0.7Gb 700 bp 0.9 $15,000
lllumina HiSeq2500 600Gb 100bp 12 $20,000
AB SOLID 500Gb 50 bp $10,000
Heliscope Helicos 37Gb 32 bp ?
Pacific PacBio- .
Bioscience RS 50Mb >10 kb 30min $1,000

*Human Genome= 3Gb
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For personal use... (~1Gb sequencing)

USE OF RNASeq

Sequencin .
Task q 5 Technique
approach
Roch “GS Junior” Illumina “MiSeq” “lonTorrent (PGM)” ;
Measuring of 36 bp single-end RNASeq,
For single molecule sequencing (real time; long base) gene expression |reads (tags counting)|  small RNASeq
Measuring of 36 bp single-end RIP Seq
gene interactions reads (tags counting) CLIP Seq
100 nt paired-end
PACBIO RS Genome reads (sequence RNASe
q q
annotation determinations)
Alternative 100 nt paired-end
lici lvsi reads (sequence RNASeq
BacBio Nanopore splicing analysis determinations)
14
67 68
Template Prep. fOI'T _— mRNA aaasa BioAnalyzer is essential for sample preparation
RNA Seg e mx;zu; } Estimated 0.3-1 million copies pq
1000 Spocios in humans

PolyA selection Q 90% of the cellular RNA are polyA (-); RNA, tRI

AAAAA
RNA fragmentation @

= ' mer )

NNNN AAAAA
NNNN
NNNN
— NN
NNNN
2" strand syn.
NNNN
NNNN
NNNN NNNN
Sequence Adaptor ligation to both ends @
| Sep—————
T T
PCR amplification @
—_—
—

mRNA Seq Template

BioAnalyzer (Agilent):
Electrophoresis on microchip

RNA integrity number

(RIN value) for qualifying the RN

2
RINA Intagry Numbe (RIN): 10 (80207) RIN=10
Resit Fggiog Colr —
Rest Fuggng Libes e

JEPBLS 1

s um

Name Start Size [nt] End Size [nt] Area 9% of total Area

2m @ 7

Dissectionk&/f
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Advantages in using BioAnalyzer (1)

non-effective material

effective material (250-450 bp) effective material (250-450 bp)

Fuly & L
! m & 5
[ # | o
1w 30
»
o -
0 ; dimer * )
Primer dimer
— e
T e e o T
Overall 2: input nple 5 :
Number of pesks found: 1 Number of peaks found: . 3
e 2 : Peak table for sample 5 : _input 50nq lot023554
° » Pesk Sze Conc Moty  Obseratio
Top1 0 Lol ol Do/l [omollll  ns
ool (ool foma e R
oL : 2 ,
= “ w0 3 140 340 M5
Lo uw o

To measure effective template amount

Examples of NGS data (RNA Seq on Genome Studio Viewer)

108,011 027

108012537 108,014,047

108,015,557 108,017,067

108,010,577

e TR T

108,020

acan

19

| RNASeq (DLD-1; the ACAT1 gene region )
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Transcriptome Analysis of Tomatoes (young/old leaves)

Once assembled to full-length cDNA, the tag count could
be also used as an indicator of its expression levels
Expression level

Matre_Joaves_110521_EASTS8 1001_S.1 - S (1px1=68)

Routine scheme for the RNA Seq . s _
]
é” £ 35 rpkm
(1 ug total RNA) (450ng library) (0.2ng library) H B
Sg
" ey e 36-base single-end read: 1 lane gﬁ 12 rpkm
» ] 4 De novo assemble (AbySS) — 511060010 Full length cDNA
) (? " RNA Seq assembled contig
T - T
“ . . rpkm: read per million tags per kb mRNA
Discovery of the novel transcripts (re P =P )
Expression level
Sequence Summary - Mt Jovos 10524 EASTS6 0015 1 - SE (ST
Tissue #reads # Assembled contigs %Matched with cDNA | %Matched with tBLASTX < e J 169 rpkm
(36bp) 500bp< / 1k < / 1.5k< 500bp< / 1k < / 1.5k< eooboe ;e]::(z 1ok . ua - -_ YR M La a1
p d
mature 29,923,071 7,165/ 2,304/834 4,648/1,456/467 6,866/ 2,280/828 an 127 rpkm
leaves . ol e bl Wl
old leaves 28,711,676 6,118/1,890/653 4,001/1,199/361 5,869/1,871/649 [ EZ27 E2 i R 220
Novel transcripts [rorm— Full length cDNA
m W reoaes_ssentis cort 1506 s e gl iz ok RNA Seq assembled contig

To proteinome

RNA Seq (poly-some)

e .
AAAAl Translational Control |

“Integrated” Transcriptome Analysis

Post-transcriptional
RNA Seq (Nuclear) equlations
‘ o BS Seq ‘ BRIC Seq [Xe9

Transcriptome (mRNA degradation)

MNase Seq (histone linker) \—PAA‘V‘\
mRNA
DNasel Seq (Open chromatin) TSS Seq

(Transcriptional Start Sits)

nucleosome
7 7 TF 7 ? polil 7 7 ? 7 ? 7 Nucleus Cytoplasm
ChIP Seq ChiP Seq ‘ ChIP Seq
3C/HIC Seq

(TF binding sites) (TFBS for GTF) (Histon modifications)
I Transcriptional regulations

Genome

NGS as common platform

Bioinformatic tools for RNA Seq

Purpose Software URL
Mapping BWA http://bio-bwa.sourceforge.net/
Bowtie2 _http://bowtie—bio.sourceforge.net/bowtie2/
index.shtml
TopHat2 http://tophat.cbcb.umd.edu/
Expression Cufflinks http://cufflinks.cbcb.umd.edu/

Cuffdiff Same as above
http://bioconductor.org/packages/release/
bioc/html/DESeq.html
http://tophat.cbcb.umd.edu/
fusion_index.html

DEseq

Fusion genes  TopHat-fusion

deFuse http://compbio.bcere.ca/software/defuse/
SOAPfuse http://soap.genomics.org.cn/soapfuse.html

el Trans-Abyss http://www.bcgsc.ca/platform/bioinfo/

software/trans-abyss
Trinity http://trinityrnaseq.sourceforge.net/
’ UCSC Genome . S

Viewer Browser http://genome.ucsc.edu/cgi-bin/hgGateway

IGV https://www.broadinstitute.org/igv/home
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BIOINFORMATICS
CREED

» Remember about biology
» Do not trust the data

o Use comparative approach
o Use statistics

* Know the limits

» Remember about biology!!!
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