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DNA story
1870 Friedrich Miescher 
discovers DNA

1944 Oswald Avery proves that 
DNA is a genetic material
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DNA story

1953 James Watson and 
Francis Crick discover 

DNA structure
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sequencing -beginnings

1964 Robert Holley determines 
nucleotide sequences (77 nt)  of 
the yeast Alanine tRNA                            
J. Biol. Chem. 240: 2122-2128

1968 Ray Wu and Dale Keiser sequenced 12 
bases (!) of λ phage’s 5’ cohesive ends 
using chain termination and polyacrylamide 
gel electrophoresis                                    J. 
Mol. Biol. 35: 523-537
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sequencing  - infancy
1977 -  Allan Maxam and Walter 
Gilbert develop DNA sequencing 
method by chemical degradation

1977 Fred Sanger develops 
2’,3’-dideoxy chain 
termination method
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chemical degradation sequencing 

Figure 4.8  Genomes 3 (© Garland Science 2007)
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chemical degradation sequencing 

Polyacrylamide gel electrophoresis can 
resolve single-stranded DNA molecules 
that differs in length by just one 
nucleotide
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chain termination DNA sequencing 

Figure 4.2  Genomes 3 (© Garland Science 2007)
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sequencing - maturity

1983 -  Marvin Carruthers 
developed a method to 
construct fragments of DNA of 
predetermined sequence from 
five to about 75 base pairs long. 
He and Leroy Hood invented 
instruments that could make 
such fragments automatically. 

1983 - Kary Mullis invented the 
polymerase chain reaction 
(PCR) technique 

1987 - ABI 370; first fully 
automated sequencing machine 

1995 - Craig Venter uses whole-
genome shotgun sequencing 
technique to determine complete 
genome of bacterium 
Haemophilus influenzae 

2005 - introduction of GS20 
sequencing machine; first in the 
line of “Next Generation 
Sequencing” 
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sequencing - maturity
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sequencing - maturity

Chromatogram of a DNA sequence generated by ABI sequencing 
machine 
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sequencing - maturity

Different types of primer for chain termination sequencing
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sequencing - maturity

Thermal cycle sequencing. PCR is 

carried out with just one primer and 

with the four dideoxynucleotides 

present in the reaction mixture. The 

result is a set of chain-terminated 

strands - the “A” family shown to the 

left. These strands are separated 

using electrophoresis methodology
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sequencing - maturity
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next generation sequencing 

Massive parallelization of the 
sequencing process 

Relatively short reads 

Different approaches from 
improving Sanger’s technique to 
direct “observation” of DNA 
through a microscope 

Attempts to sequence single 
molecules without amplification step
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NGS - pyrosequencing
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NGS - pyrosequencing

19

NGS - pyrosequencing
After the emulsion PCR has been 
performed, the oil is removed, and 
the beads are put into a “picotiter” 
plate.  Each well is just big enough to 
hold a single bead. 

The pyrosequencing enzymes are 
attached to much smaller beads, 
which are then added to each well. 

The plate is then repeatedly washed 
with the each of the four dNTPs, 
plus other necessary reagents, in a 
repeating cycle. 

The plate is coupled to a fiber optic 
chip.  A CCD camera records the 
light flashes from each well.
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NGS - pyrosequencing
Extension with individual dNTPs gives a 
readout. The readout is recorded by a 
detector that measures position of light 
flashes and intensity of light flashes.
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NGS - pyrosequencing
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NGS - Illumina 
Workflow
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NGS - Illumina 
The flow cell - a core component 
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NGS - Illumina 
Preparation of template 
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NGS - Illumina 
The flow cell is mounted on the cBot
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NGS - Illumina 
Hybridization of template
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NGS - Illumina 
Amplification of template
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NGS - Illumina 
Annealing of sequencing primer to template
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NGS - Illumina 
Summary - "cluster generation"

30
bioinfo1_2_2015 - 28 October 2015



NGS - Illumina 
The flow cell is mounted on the sequencer
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NGS - Illumina 
Incorporation
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NGS - Illumina 
Scanning
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NGS - Illumina 
Cleavage
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NGS - Illumina 
Millions of clusters are sequenced in parallel
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NGS - Illumina 
A picture is taken every time a new base is added
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NGS -ion torrent

Ten times faster workflow than 
other NGS systems 

~2 hour sequencing runs (real-
time detection of sequence 
extension) 

Batch sample preparation (six 
samples in six hours) 

Capable of six samples/day on 
two PGM Systems
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NGS -ion torrent 
Simple Natural Chemistry

Sequencing by synthesis
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NGS -ion torrent 
Fast Direct Detection
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NGS -ION TORRENT
Four nucleotides flow sequentially
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NGS -ION TORRENT
Four nucleotides flow sequentially
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NGS -ION TORRENT
Four nucleotides flow sequentially

42
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NGS -ION TORRENT
Base call

43

A

NGS -ION TORRENT
Base call
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A T

NGS -ION TORRENTBase call
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A T C

NGS -ION TORRENTBase call

46

A T C 4 x T

NGS -ION TORRENTBase call
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ATCGTGTTTTAGGGTCCCCGGGGTTAAAA…

NGS -ION TORRENTBase call
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Third generation sequencing

https://www.youtube.com/watch?v=_B_cUZ8hSYU
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Third generation sequencing

Single molecule sequencing: MinION by Oxford Nanopore 
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Sequencing using nanopores
Nanopores as polymer sensors. 

The idea emerged in early 1990s. 

Fundamental work done by David 
Deamer and Daniel Branton in 
collaboration with John 
Kasianowicz. (PNAS 1996 
146:13770-13773) 

Hundreds of papers and patents 
since then.
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MinION basics 
https://nanoporetech.com/science-technology/introduction-

to-nanopore-sensing/introduction-to-nanopore-sensing

Synthetic membrane 

Nanopore is created by modified α-
hemolysin 

Non-destructive motor protein (actually 
serves as a break)

52

MinION basics 
https://nanoporetech.com/science-technology/introduction-

to-nanopore-sensing/introduction-to-nanopore-sensing

512 channels (pores) per flow cell. Usually 
about 90% are working. 

Read length: > 10 Kb (Phage λ DNA, 50 
Kb) 

Read speed: 8 bases to 20 bases/sec 

Run time: max 48 hours  

Error rate = 5-10 % 

Sequence yield per flow cell: 0.5 - 1.4 Gb 
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Easy, standard template 
preparation 

Time of library preparation: 
1D - about ten min 
2D - up to two hours  

Cost of a single run: 
reagents $1000 
flow cell   $1000
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MinION dataflow

MinION 
Nanopore sensing is carried out on the sensor chip, contained in the flow cell inside the MinION device. Data is processed by an 

Application-Specific Integrated Circuit (ASIC) also in the flow cell and processed in real time by the MinKNOW software 

MinKNOW 
MinKNOW is the software that controls the MinION. It carries out several core data tasks and can be used to change experimental 

workflows or parameters. MinKNOW runs on the user’s computer. 

METRICHOR 
Metrichor is an on-demand, cloud-based, bioinformatics data analysis platform. It supports Oxford Nanopore base calling 

software. Base calling may be made available locally .
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MiniKNOW - Data Render
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MiniKNOW - Channels Panel
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Metrichor
Raw data,  BaseCall data  -> .Fast5 file 
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HDFView
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Advantage of nanopore technology

Label-free  

Single molecule, long reads 
analysis 

Disposable; autoclavable 
after the use 

Portable; requires no pre-
installation  of any instruments

61

Numerous applications explored by MinION 
Access Program (MAP) 

Genomic DNA sequencing 

Metagenomic analysis 

Direct RNA sequencing 

Species identification in the field 

Splice variants identification 

Direct determination of modified 
nucleotides 

And many more to come…
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Potential for tropical diseases research and diagnostics

In many countries where tropical 
diseases prevail  

no conventional sequencer/
PCR instruments are available 

shortage of well-trained 
technical staff 

Needs for handling potentially 
dangerous pathogens

63

Nature 496, 504–507 (25 April 2013)

Dengue fever

64

Dengue fever
Transmitted by a bite of mosquito infected with dengue virus 
(genome size  almost 11 kb) 

Febrile illness that affects infants, young children and adults with 
symptoms appearing 3-14 days after the infective bite. 

There are four serotypes (D1~ D4), whose genomes are about 70% 
identical one to each other. 

Second infection of the same serotype may cause severe symptoms; 
dengue hemorrhagic fever, abdominal pain, persistent vomiting, 
bleeding and breathing difficulty and is a potentially  lethal.

65

Sample preparation

Serum (1 - 5 µL) -> Mix with Dry Lamp reagent kit -> 
65 oC for 60 min -> Purification (AMPure) ->

LAMP Amplification

Nonopore Sample Prep

66
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Distribution of quality scores for each nucleotide
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Read length distribution
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LAST alignments against dengue genome
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Conclusion

MinION, despite low sequencing accuracy, 
can be used for dengue virus serotyping

70

Malaria parasite

71

Malaria parasite

72
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Spreading drug resistance

Dondorp et al. Nat. Microbiol (2010)

Chloroquine resistance        Sulfadoxine resistance 

73

Drug Resistant Mutations

Nair at al. (2014) Genome Res. 24(6):1028-38. 

Drug Gene Number of known 
mutations

Chloroquine CRT 1

Chloroquine/mefloquine MDR 2

Artemisin K13 1

Sulphadoxine-pyrimethamine DHFR 4

Sulphadoxine-pyrimethamine DHPS 6

74

Declining of resistance parasite 
population

A study in Malawi, reported 
that population of CQ 
resistant P. 
falciparum(CQR)has 
decreased.

Declining of 76T mutation also reported in some other 
countries (i.e. Benin, Kenya, and Senegal) though at a 
slower rate.
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Targets for malaria genotyping
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Distribution of quality scores for each nucleotide
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Plasmodium SNP discovery (no filtering)
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Plasmodium SNP discovery (two reads minimum)
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Plasmodium SNP discovery (five reads minimum)
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Miscall rate against amplicon length
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Miscall rate against sequencing 
depth
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Pf3D7_01_v3:466960−470216:−:pfmrp1_2 of length 3256  generated from file  nanopore_reads_run20141205_5_39.all.fastq.maf.tab.csv  on: 2015−01−20 21:11:42

Reference Sequence and aligned Reads
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Pf3D7_08_v3:548039−550780:+:DHPS of length 2741  generated from file  nanopore_reads_run20141205_5_39.all.fastq.maf.tab.csv  on: 2015−01−20 21:11:39
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Pf3D7_07_v3:403089−404828:+:PfCRT_1 of length 1739  generated from file  nanopore_reads_run20141205_5_39.all.fastq.maf.tab.csv  on: 2015−01−20 21:11:41
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M76611:3438−4680:+:apocytochrome_b of length 1242  generated from file  nanopore_reads_run20141205_5_39.all.fastq.maf.tab.csv  on: 2015−01−20 21:11:43

Reference Sequence and aligned Reads
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Conclusions

1. It seems that nanopore can be used for 
SNPs detection. 

2. At the moment not good for indels call
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NGS - what is coming 
transmission electron microscopy

More at http://www.allseq.com/knowledgebank/

95

sequencing informatics
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SEQUENCING INFORMATICS 
ASSEMBLY AS A GIANT PUZZLE

97

sequence assembly
A fundamental goal of DNA sequencing has been to generate large, continuous 
regions of DNA sequence 

Capillary sequencing reads ~600-800 bp in length 

Overlap based assembly algorithms (phrap, phusion, arachne) 

Compute all overlaps of reads and then resolve the overlaps to generate 
the assembly 

In principle, assembling a sequence is just a matter of finding overlaps and 
combining them. 

In practice:  

most genomes contain multiple copies of many sequences,  

there are random mutations (either naturally occurring cell-to-cell 
variation or generated by PCR or cloning),  

98
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assembly problems

101

assembly problems 
sequencing gaps
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Assembly problems closing gaps

103

sequence assembly 
NGS case

Volume and read length of data from next-gen sequencing 
machines meant that the read-centric overlap approaches 
were not feasible 

already in 1980’s Pevzner et al. introduced an alternative 
assembly framework based on de Bruijn graph 

Based on a idea of a graph with fixed-length 
subsequences (k-mers) 

Key is that not storing read sequences – just k-mer 
abundance information in a graph structure

104

De Bruijn graph construction

Genome is sampled with random sequencing of for example 7 bp 
reads. Note errors in the reads are represented in red

Flicek & Birney (2009) Nat Meth, 6: S6-S12.
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De Bruijn graph construction

The k-mers in the reads (4-mers in this example) are collected into nodes and 
the coverage at each node is recorded (numbers at nodes). 
Features: 

continuous linear stretches within the graph 
Sequencing errors are low frequency tips in the graph

Flicek & Birney (2009) Nat Meth, 6: S6-S12.

106

Graph is simplified to combine nodes that are associated with the continuous 
linear stretches into single, larger nodes of various k-mer sizes. 
Error correction removes the tips and bubbles that result from sequencing errors. 
Final graph structure that accurately and completely describes in the original 
genome sequence

Flicek & Birney (2009) Nat Meth, 6: S6-S12.

107

repeats problem

Very similar sequences may lead to false assembly, especially if the 
repeated region is longer than average reads length, e.g. recent tandem 
duplications or recent transpositions of mobile elements. 

108
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next-gen assemblers
First de Bruijn based assembler was Newbler developed by 454 Life 
Sciences 

Adapted to handle main source of error in 454 data – indels in 
homopolymer tracts 

Many de Bruijn assemblers subsequently developed 

SHARCGS, VCAKE, VELVET, EULER-SR, EDENA, ABySS 
and ALLPATHS, SOAP 

Most can use mate-pair information 

Slightly different approach to transcriptome assembly 

It has to allow many discontinuous graphs representing single 

109

assembly evaluation - N50

If one orders the set of contigs produced by the assembler by size, then 
N50 is the size of the contig such that 50% of the total bases are in 
contigs of equal or greater size. 
15+12+9+7+6+5+2 = 56 
56/2 = 28    ->  N50 is 9kb (15+12 = 27 is less than 50%)
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data storage problem 
a consequence of sequencing technology success
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BIOINFORMATICS CREED

• Remember about biology 

• Do not trust the data 

• Use comparative approach 

• Use statistics 

• Know the limits 

• Remember about biology!!!
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