Towards the past

Victoria Shabardina Institute of Bioinformatics, Muenster July 10 2019

Figure: Clinical Microbiology Reviews, Dec. 1969

Architectural and functional rearrangement of genomes and the life style

Features	Physiological adaptation	Mechanism	
Free living Acanthamoeba castellanii	Plasticity of gene expression (high activity)	Transcription regulation	
	Big variety of serine/threonine kinases (environment)	Gene diversification and organism adaptation	
	Acquirement of new genes (from surrounding bacteria)	Horizontal Gene Transfer	
Parasitic Entamoeba histolytica	Minimizing biosynthesis (amino acids, pyrimidines)	Gene lost	
	Increase of some genes copy number or number of orthologs (host lysis, phagocytosis)	Gene duplication	
Happy Sewing	Specific physiology (oxygen level, host immunity)	Diversification, adaptation, transcription machinery	
Mappa			

Entamoeba histolytica

Genome

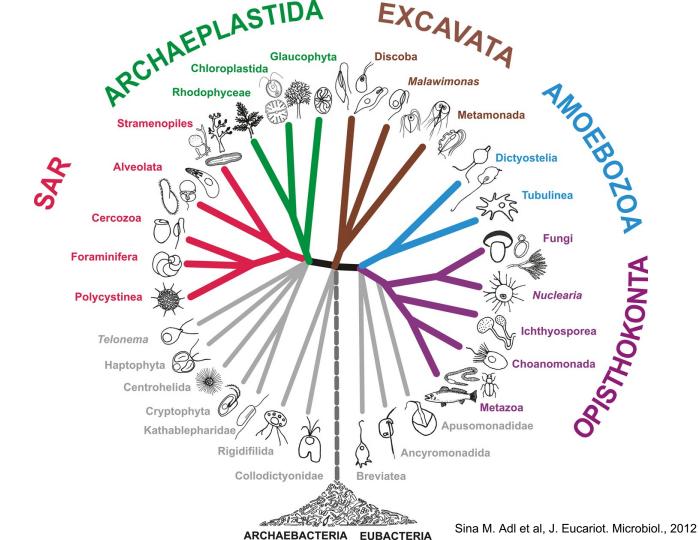
8163 protein coding genesvs14974 protein coding genes20 Mbases42 Mbases

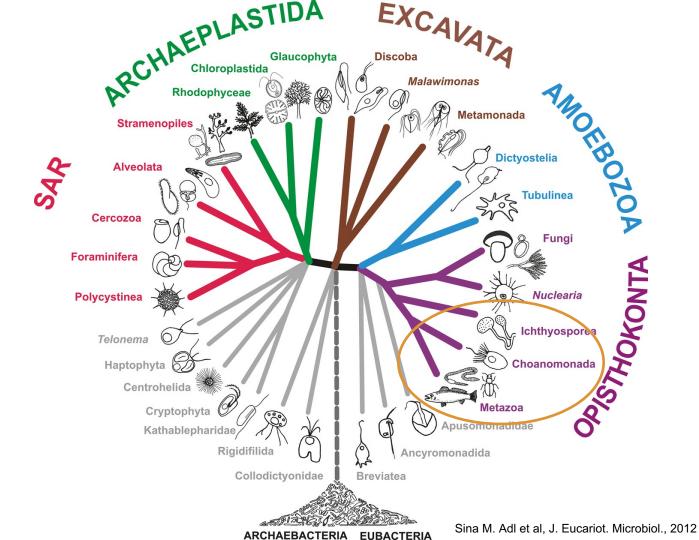
Number of ribosomal proteins with multiple (3-5) gene copy number

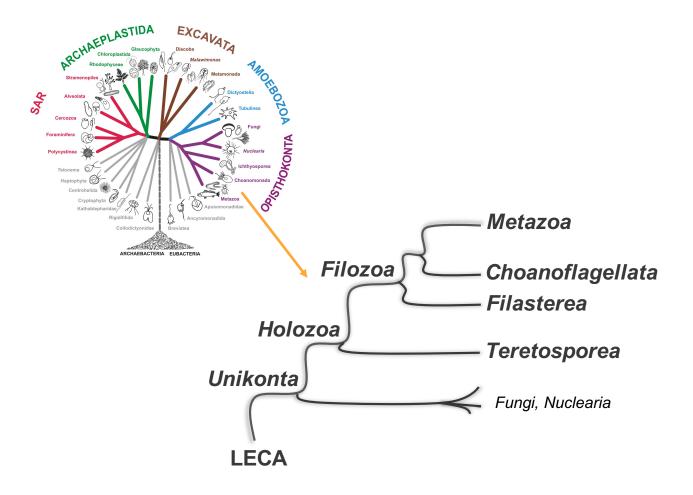
44 vs **4**

Gene copy number for each aminoacyl-tRNA ligase

1 vs 2-4

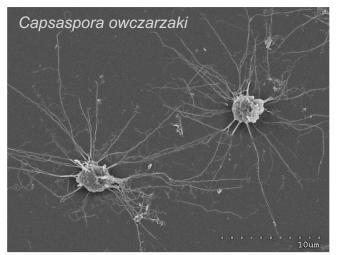

Architectural and functional rearrangement of genomes and the life style

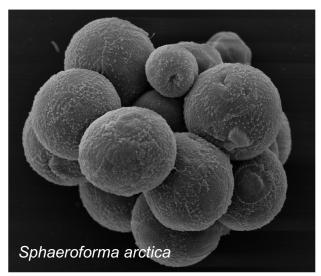

- *Eh* and *Ac* underwent expansion of different genes families
- **High efficiency** in genome usage of *Entamoeba*: stable translation levels, intensified transcription machinery, high gene copy number
- New step towards learning about "ribosomal code"
- Saving on energy metabolism: minimized activity in pathways related to pyrimidines in Eh
- Unique cytoskeletal proteins in *Eh* (possibly compensation for the lost of ER)
- **Highly** expressed proteins/whole orthology clusters in both amoebas with yet unknown functions


Int J Biol Sci. 2018 Feb 12;14(3):306-320. doi: 10.7150/ijbs.23869. eCollection 2018.

Environmental adaptation of *Acanthamoeba castellanii* and *Entamoeba histolytica* at genome level as seen by comparative genomic analysis.

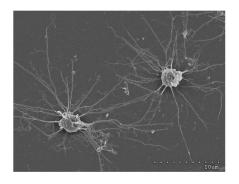
Shabardina V¹, Kischka T¹, Kmita H², Suzuki Y³, Makałowski W¹.





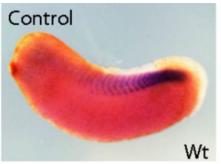
MulticellgenomeLab: www.flickr.com/photos/146564503@N06/albums

Complex genome structure Transcription regulation Cell type specific phosphosignalling Cell type specific long ncRNAs Alternative splicing Cell type specific histone marks


Animal specific proteins:

c-type lectins, cadherins, integrins (cell adhesion)

Some tyrosine kinases responsible for cells communication


Myc, Runx and T-box TF (developmental regulation in animals)


P53 (tumor antigen)

Capsaspora owczarzaki

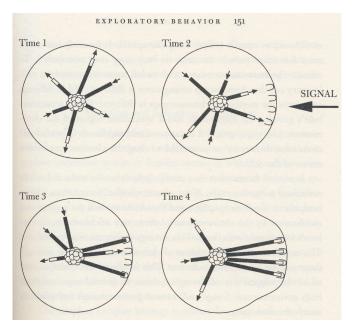
Sebe-Pedros et al, PNAS, 2013

Xbra En + Co Tbx3

Xbra En + Xbra Mild

Xbra En – defected Brachyury Xbra – xenopus mRNA rescue Co Bra – capsaspora mRNA rescue Co Tbx3 – T-box3 mRNA rescue

Ways of evolution:


Re-use of molecular mechanisms and pathways Domain shuffling and alternative splicing – new genes Exploratory behavior, physiological adaptation

Ways of evolution:

Re-use of molecular mechanisms and pathways

Domain shuffling and alternative splicing - new genes

Exploratory behavior, physiological adaptation

"The plausibility of life" M. W. Kirschner & J. C. Gerhart Yale University Press, 2005

Long read sequencing

species	Scaffold count	Scaffold N50, bases	technology	Cove rage	year
Limulus Polyphemus (horseshoe crab)	286 792	254 089	Roche 454	18x	2014
Octopus bimaculoides	151 674	475 182	Illumina HiSeq 2000	92x	2015
Amphimedon queenslandica (sponge)	13 397	120 365	Sanger	8x	2010
Phascolarctos cinereus (koala)	1 906	11 587 828	PacBio	57.3x	2017
Ornithorhynchus anatinus (platypus)	304	83 338 043	PacBio RSII, 10X Genomics, Bionano Genomics DLS, Dovetail Genomics HiC, Arima Genomics	58.5x	2019

