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TECHNOLOGY MEETS 
BIOLOGY



IMPROVING TECHNOLOGY

MR Stratton et al. Nature 458, 719-724 (2009)



IMPROVING TECHNOLOGY

http://ark-invest.com/genomic-revolution/declining-costs-of-genome-sequencing
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IMPROVING TECHNOLOGY

http://ark-invest.com/genomic-revolution/declining-costs-of-genome-sequencing



GETTING SEQUENCES

TGCATCGATCGTAGCTAGCTAGCGCATGCTAGCTAGCTAGCTAGCTACGATGCATCG 
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG 
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG 
CGCGCGCATTATGCCGCGGCATGCTGCGCACACACAGTACTATAGCATTAGTAAAAA 
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGCGCGTAGCTAGTGCTAGCTAGTC 
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT 
AGCTAGTGTAGCTAGCTAGCATGCTGCTAGCATGCAGCATGCATCGGGCGCGATGCT 
GCTAGCGCTGCTAGCTAGCTAGCTAGCTAGGCGCTAATTATTTATTTTGGGGGGTTA 
AAAAAAAAAATTTCGCTGCTTATACCCCCCCCCACATGATGATCGTTAGTAGCTACT 
AGCTCTCATCGCGCGGGGGGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC 
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT 
AAAGACCCCATCTCTCTCTCTTTTCCCTTCTCTCGCTAGCGGGCGGTACGATTTACC 
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGCGCGTAGCTAGTGCTAGCTAGTC 
AGCTCTCATCGCGCGGGGGGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC 
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG 
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT 
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG 
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT



READING ≠ UNDERSTANDING

Carmina qui quondam studio 
florente peregi, flebilis heu maestos 
cogor inire modos. 
Ecce mihi lacerae dictant scribenda 
Camenae et ueris elegi fletibus ora 
rigant. 

Boethius, Consolatio Philosophiae 

http://www.perseus.tufts.edu/hopper/morph?l=carmina&la=la&can=carmina0
http://www.perseus.tufts.edu/hopper/morph?l=qui&la=la&can=qui0&prior=carmina
http://www.perseus.tufts.edu/hopper/morph?l=quondam&la=la&can=quondam0&prior=qui
http://www.perseus.tufts.edu/hopper/morph?l=studio&la=la&can=studio0&prior=quondam
http://www.perseus.tufts.edu/hopper/morph?l=florente&la=la&can=florente0&prior=studio
http://www.perseus.tufts.edu/hopper/morph?l=peregi&la=la&can=peregi0&prior=florente
http://www.perseus.tufts.edu/hopper/morph?l=flebilis&la=la&can=flebilis0&prior=peregi
http://www.perseus.tufts.edu/hopper/morph?l=heu&la=la&can=heu0&prior=flebilis
http://www.perseus.tufts.edu/hopper/morph?l=maestos&la=la&can=maestos0&prior=heu
http://www.perseus.tufts.edu/hopper/morph?l=cogor&la=la&can=cogor0&prior=maestos
http://www.perseus.tufts.edu/hopper/morph?l=inire&la=la&can=inire0&prior=cogor
http://www.perseus.tufts.edu/hopper/morph?l=modos&la=la&can=modos0&prior=inire
http://www.perseus.tufts.edu/hopper/morph?l=ecce&la=la&can=ecce0&prior=modos
http://www.perseus.tufts.edu/hopper/morph?l=mihi&la=la&can=mihi0&prior=ecce
http://www.perseus.tufts.edu/hopper/morph?l=lacerae&la=la&can=lacerae0&prior=mihi
http://www.perseus.tufts.edu/hopper/morph?l=dictant&la=la&can=dictant0&prior=lacerae
http://www.perseus.tufts.edu/hopper/morph?l=scribenda&la=la&can=scribenda0&prior=dictant
http://www.perseus.tufts.edu/hopper/morph?l=Camenae&la=la&can=camenae0&prior=scribenda
http://www.perseus.tufts.edu/hopper/morph?l=et&la=la&can=et0&prior=Camenae
http://www.perseus.tufts.edu/hopper/morph?l=ueris&la=la&can=ueris0&prior=et
http://www.perseus.tufts.edu/hopper/morph?l=elegi&la=la&can=elegi0&prior=ueris
http://www.perseus.tufts.edu/hopper/morph?l=fletibus&la=la&can=fletibus0&prior=elegi
http://www.perseus.tufts.edu/hopper/morph?l=ora&la=la&can=ora0&prior=fletibus
http://www.perseus.tufts.edu/hopper/morph?l=rigant&la=la&can=rigant0&prior=ora


We shall best understand the probable course of 
natural selection by taking the case of a country 
undergoing some physical change. If the 
country were open were open on its borders, 
new forms would certainly immigrate, and this 
also would bla, bla bla become extinct 
inhabitants. 

READING ≠ UNDERSTANDING

Charles Darwin - The Origin of Species



READING ≠ UNDERSTANDING

Charles Darwin - The Origin of Species

We shall best understand the probable course of 
natural selection by taking the case of a country 
undergoing some physical change. If the 
country were open were open on its borders, 
new forms would certainly immigrate, and this 
also would bla, bla bla become extinct 
inhabitants. 



CHALLENGE: HOW 
FROM THIS…

TGCATCGATCGTAGCTAGCTAGCGCATGCTAGCTAGCTAGCTAGCTACGATGCATCG 
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG 
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG 
CGCGCGCATTATGCCGCGGCATGCTGCGCACACACAGTACTATAGCATTAGTAAAAA 
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGCGCGTAGCTAGTGCTAGCTAGTC 
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT 
AGCTAGTGTAGCTAGCTAGCATGCTGCTAGCATGCAGCATGCATCGGGCGCGATGCT 
GCTAGCGCTGCTAGCTAGCTAGCTAGCTAGGCGCTAATTATTTATTTTGGGGGGTTA 
AAAAAAAAAATTTCGCTGCTTATACCCCCCCCCACATGATGATCGTTAGTAGCTACT 
AGCTCTCATCGCGCGGGGGGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC 
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT 
AAAGACCCCATCTCTCTCTCTTTTCCCTTCTCTCGCTAGCGGGCGGTACGATTTACC 
GGCCGCGTATATTTTACACGATAGTGCGGCGCGGCGCGTAGCTAGTGCTAGCTAGTC 
AGCTCTCATCGCGCGGGGGGATGCTTAGCGTGGTGTGTGTGTGTGGTGTGTGTGGTC 
TGCATCGATCGATGCATGCTAGCTAGCTAGCTAGCATGCTAGCTAGCTAGCTATTGG 
CTATAATTAGTGCATCGGCGCATCGATGGCTAGTCGATCGATCGATTTTATATATCT 
CGCTAGCTAGCATGCATGCATGCATCGATGCATCGATTATAAGCGCGATGACGTCAG 
TCCGGTTACACAGGTAGCTAGCTAGCTGCTAGCTAGCTGCTGCATGCATGCATTAGT



Infer this



HOW TO SOLVE THE PROBLEM - 
A HUMAN OR A COMPUTER?

 very smart 

 slow 

 error prone 
 doesn’t like repetitive tasks

 not so smart (stupid) 

 extremely fast 

 very accurate 
 doesn’t understand human languages; 

needs instruction provided in a special way



ALGORITHM

A step-by-step problem-
solving procedure, 
especially an established, 
recursive computational 
procedure for solving a 
problem in a finite number 
of steps.



EXAMPLE TASK: 
PUT SHOES ON!

A human just understands an order 

and often executes it automatically  

even without thinking

A computer needs detailed 

instruction (an algorithm)



PUT SHOES ON! 
INSTRUCTION FOR A COMPUTER

1. Find two the same shoes 

2. Check if you have left and right shoe 

3. Check if they are of the same size 

4. Check if this is the right size 

5. Put the left shoe on 

6. Put the right shoe on 

7. Tie the laces



THE ORIGIN OF THE FIELD

Paulien Hogeweg coined the term 

bioinformatica to define “the 

study of informatic processes in 

biotic systems’’. Hesper B, Hogeweg P (1970) Bioinformatica: een  

werkconcept. Kameleon 1(6): 28–29. (In Dutch.) Leiden: Leidse Biologen Club.

... but its origin can be tracked back 

many decades earlier.



BIOINFORMATICS EMERGED AS AN 
INTERSECTION BETWEEN 
DIFFERENT DISCIPLINES

Molecular  
biology 

Statistics 

Information  
technology 

Molecular  
evolution 



BIOINFORMATICS - 
DEFINITION

Research, development, or application of computational 
tools and approaches for expanding the use of biological 
data, including those to acquire, store, organize, archive, 
analyze, or visualize such data. 

Its goal is to enable biological discovery based on existing 
information or in other words transform biological data into 
information and eventually into knowledge.



PHYLOGENETIC ANALYSIS

Haeckel (1866) 
Generelle Morphologie 
der Organismen



ROLE OF BIOINFORMATICS  
IN MODERN BIOLOGY

molecular biology 

molecular evolution  

genomics  

system biology 

protein engineering 

drug design 

personalized medicine 

biogeography 



WHAT IS PHYLOGENETIC 
ANALYSIS?

Phylogenetics is the study of evolutionary 
relationships 

Phylogenetic analysis is the means used to estimate 
evolutionary relationships based on observable 
evidence 

Evidence can include morphology, physiology, and 
other properties of organisms.  Paleontological and 
geological evidence is also used.



THE ONLY FIGURE IN 
“THE ORIGIN OF SPECIES”

The affinities of all the beings of 
the same class have sometimes 
be represented by a great tree.  I 
believe this simile largely speaks 
the truth…… 
…The green and budding twigs 
may represent existing species; 
and those produced during 
former years may represent the 
long succession of extinct 
species….. 
….the great Tree of Life….covers 
the earth with ever-branching 
and beautiful ramifications

Charles Darwin, 1856



THE USE OF TREES AS 
METAPHORS WAS PROMOTED BY 

ERNST HAECKEL

Haeckel (1866) 
Generelle Morphologie 
der Organismen



MOLECULAR 
PHYLOGENETICS

The molecular biology of an 
organism can also provide 
evidence for phylogenetic 
analysis 

Accumulated mutational changes 
in DNA and protein sequence 
over time constitutes evidence 

Sequence-based phylogenetic 
analysis can be automated or 
semi-automated using 
computers
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THINGS TO REMEMBER

The events that determine a phylogeny happened in the past 

They cannot be known empirically, they can only be inferred from 
their "end products", whether these are morphological or 
molecular 

The tree is the model of evolutionary events that best explains the 
end product (diverged group of sequences) 

Phylogenetic analysis is modeling or estimation, and the quality 
or certainty of the analysis should be presented along with the 
result



EXAMPLES OF PHYLOGENETIC 
ANALYSIS: 

MOLECULAR TAXONOMY
90 80 70 60 50 40 30 20 10 0

CRETACEOUS TERTIARY

New World monkeys

Human

Chimp

Gorilla

Orang

Gibbons

O.W. monkeys

Ma

Stauffer et al. (2001);  
Kumar & Hedges (1998)



EXAMPLES OF PHYLOGENETIC ANALYSIS: 
EVOLUTIONARY HISTORY OF A SINGLE 

MOLECULE

DMC1  
DNA meiotic recombinase 1 



EXAMPLES OF PHYLOGENETIC ANALYSIS: 
EVOLUTIONARY HISTORY OF A SINGLE 

MOLECULE

DMC1 orthologs

first cluster of paralogs 
in Arabidopsis

second cluster of paralogs 
in Arabidopsis



EXAMPLES OF PHYLOGENETIC 
ANALYSIS: 

MOLECULAR EPIDEMIOLOGY



NOMENCLATURE

A phylogenetic tree is characterized by ”leaves”, ”nodes” and 
”branches.”  

Leaves (vertices) represent species or sequences compared. 

Nodes (vertices) are usually bifurcations and represent gene 
duplication or speciation events, hypothetical ancestor 
sequences. 

Branches (edges) are always linear and represent sequence 
diversity but can also be of unit length.   

The root (vertex) is optional and represents the hypothetical 
ancestor.  



NOMENCLATURE

human 1

mouse 1

human 2

mouse 2

Branch

internal

externalexternal

Node

Leave



TREE INTERPRETATION

((A,(B,C)),(D,E))  = The above phylogeny as nested parentheses, 
so called the Newick tree format

Taxon A

Taxon B

Taxon C

Taxon E

Taxon D

There’s no meaning to the
spacing between the taxa, 
or to the order in which they 
appear from top to bottom.

This dimension either can have no scale (for ‘cladograms’), can be proportional to genetic 
distance or amount of change (for ‘phylograms’ or ‘additive trees’), or can be proportional
to time (for ‘ultrametric trees’ or true evolutionary trees).  

Taxon A

Taxon B

Taxon C

Taxon E

Taxon D

There’s no meaning to the
spacing between the taxa, 
or to the order in which they 
appear from top to bottom.

This dimension either can have no scale (for ‘cladograms’), can be proportional to genetic 
distance or amount of change (for ‘phylograms’ or ‘additive trees’), or can be proportional
to time (for ‘ultrametric trees’ or true evolutionary trees).  

The above tree suugests that B and C are more closely related to each other than 
either is to A, and that A, B, and C form a clade that is a sister group to the clade
composed of D and E.  If the tree has a time scale, then D and E are the most 
closely related.  



TYPES OF TREES

Taxon A

Taxon B

Taxon C

Taxon D

1
1

1

6

3

5

genetic change

Taxon A

Taxon B

Taxon C

Taxon D

timetime

Taxon A

Taxon B

Taxon C

Taxon D

no meaning

Cladogram Phylogram Ultrametric tree

All show the same evolutionary relationships, or branching orders, between the taxa.



TREE PRESENTATION - DIFFERENT 
GRAPHS THE SAME MEANING

A B

C

D

A

B

C

D

A

B

C

D



THE GOAL OF PHYLOGENY INFERENCE IS 
TO RESOLVE THE  BRANCHING ORDERS 

OF LINEAGES IN EVOLUTIONARY TREES: 

Completely unresolved
or "star" phylogeny

Partially resolved
phylogeny

Fully resolved,
bifurcating phylogeny

A A A

B

B B

C

C

C

E

E

E

D

D D

Polytomy or multifurcation A bifurcation

A A A

B

B B

C

C

C

E

E

E

D

D D

Polytomy or multifurcation A bifurcation



THERE ARE THREE POSSIBLE 
UNROOTED TREES FOR FOUR TAXA

A C

B D

Tree 1
A B

C D

Tree 2
A B

D C

Tree 3
A C

B D

Tree 1
A C

B D

Tree 1
A B

C D

Tree 2
A B

C D

Tree 2
A B

D C

Tree 3
A B

D C

Tree 3

Phylogenetic tree building (or inference) methods are aimed at 
discovering which of the possible unrooted trees is "correct". 
We would like this to be the “true” biological tree — that is, one  
that accurately represents the evolutionary history of the taxa. 
However, we must settle for discovering the computationally  
correct or optimal tree for the phylogenetic method of choice.  



THE NUMBER OF UNROOTED TREES 
INCREASES IN A GREATER THAN EXPONENTIAL 

MANNER WITH NUMBER OF TAXA

CA

B D

A B

C

A D

B E

C

A D

B E

C

F

CA

B D

CA

B D

A B

C

A B

C

A D

B E

CA D

B E

C

A D

B E

C

F

A D

B E

C

F

# Taxa (N) # Unrooted 
trees

 3           1

 4           3

 5          15

 6         105

 7         945

 8      10,935

 9     135,135

10   2,027,025

 .        .

30  3.58 x 1036



AN UNROOTED, FOUR-TAXON TREE CAN BE 
ROOTED IN FIVE DIFFERENT PLACES TO 

PRODUCE FIVE DIFFERENT ROOTED TREES

A C

B D



The unrooted tree:

A C

B D

Rooted tree 4

C

D

A

B

4

Rooted tree 4

C

D

A

B

C

D

A

B

4

Rooted tree 3

A

B

C

D

3

Rooted tree 3

A

B

C

D

A

B

C

D

3

Rooted tree 5

D

C

A

B

5

Rooted tree 5

D

C

A

B

D

C

A

B

5

Rooted tree 2

A

B

C

D

2

Rooted tree 2

A

B

C

D

A

B

C

D

2

Rooted tree 1

B

A

C

D

1

Rooted tree 1

B

A

C

D

B

A

C

D

1

These trees show five different evolutionary relationships among the taxa!

AN UNROOTED, FOUR-TAXON TREE CAN BE 
ROOTED IN FIVE DIFFERENT PLACES TO 

PRODUCE FIVE DIFFERENT ROOTED TREES



FIVE STEPS IN BUILDING A 
PHYLOGENETIC ANALYSIS

Finding all homologs 

Multiple sequence alignment 

Building a tree 

Statistical assessment of a tree 

Viewing a tree and drawing conclusions



STEP 1: FINDING ALL 
HOMOLOGS

Sequence homology search is the most popular 
approach: 

use protein sequences 

use PSI-BLAST or delta-BLAST not a simple BLASTp 

Text search in protein databases is often useful in 
finding distant, very diverged homologs 

Search protein domains database, e.g. Pfam



STEP 2: MULTIPLE 
SEQUENCE ALIGNMENT

Approaches to Multiple Sequence Alignment 

Dynamic Programming 

Progressive Alignment 

Iterative Alignment 

Statistical Modeling



DYNAMIC PROGRAMMING 
APPROACH

Dynamic programming with two sequences 

Relatively easy to code 

Guarantee to obtain optimal alignment 

Can this be extended to multiple sequences?



DYNAMIC PROGRAMMING 
WITH THREE SEQUENCES

Figure source: http://www.techfak.uni-bielefeld.de/bcd/Curric/MulAli/node2.html 



MULTIPLE DYNAMIC 
PROGRAMMING COMPLEXITY

Memory requirements if each sequence has 
length of n 

2 sequences: O(n2) 
3 sequences: O(n3) 
k sequences: O(nk) 

Time problem:

O(2k  Π  |si|)
i=1,...,k

If the calculation factor is one nanosecond, then for six sequences of length  
100, we'll have a running time of 26 x 1006 x 10-9, that's roughly 64000 seconds 
(almost 18 hours). Just add two sequences, and the running time increases to  
2.56 x 109  seconds (over 81 years)!



SOLUTION: PROGRESSIVE 
ALIGNMENTS

Align most related sequences 

Add on less related sequences to initial 
alignment 

Software Examples: 
ClustalW 
MultAlin



PROGRESSIVE 
ALIGNMENT

Devised by Feng and Doolittle in 1987 
Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 25(4):351-60  

Essentially a heuristic method and as such is not guaranteed to find 
the ‘optimal’ alignment 

Requires n-1+n-2+n-3...n-n+1 pairwise alignments as a starting 
point 

Most successful implementation is Clustal  
Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive 
multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix 
choice. Nucleic Acids Research, 22:4673-4680. 

Thompson,J.D., Gibson,T.J., Plewniak,F., Jeanmougin,F. and Higgins,D.G. (1997) The ClustalX windows 
interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids 
Research, 24:4876-4882.



CLUSTALW - AN OVERVIEW

1  PEEKSAVTALWGKVN--VDEVGG
2  GEEKAAVLALWDKVN--EEEVGG
3  PADKTNVKAAWGKVGAHAGEYGA
4  AADKTNVKAAWSKVGGHAGEYGA
5  EHEWQLVLHVWAKVEADVAGHGQ

Hbb_Human 1  -
Hbb_Horse 2  .17  -
Hba_Human 3  .59  .60  -
Hba_Horse 4  .59  .59  .13  -
Myg_Whale 5  .77  .77  .75  .75  -

Hbb_Human

Hbb_Horse

Hba_Horse

Hba_Human

Myg_Whale

2

1

3 4

2

1

3 4

alpha-helices

Quick pairwise alignment: 
calculate distance matrix

Neighbor-joining tree
(guide tree)

Progressive alignment 
following guide tree

CLUSTAL W



CLUSTALW- PAIRWISE 
ALIGNMENTS

First perform all possible pairwise alignments 
between each pair of sequences. There are (n-1)+
(n-2)...(n-n+1) possibilities. 

Calculate the ‘distance’ between each pair of 
sequences based on these isolated pairwise 
alignments. 

Generate a distance matrix.



CLUSTALW- GUIDE TREE

Generate a Neighbor-Joining ‘guide tree’ from these 
pairwise distances 

This guide tree gives the order in which the 
progressive alignment will be carried out



CLUSTALW - FIRST PAIR

Align the two most closely-related sequences first. 

This alignment is then ‘fixed’ and will never change.  
If a gap is to be introduced subsequently, then it will 
be introduced in the same place in both sequences, 
but their relative alignment remains unchanged



CLUSTALW- DECISION 
TIME

Option 1Option 1 Option 2Option 2

Consult the guide tree to see what alignment is performed next. 
Align a third sequence to the first two 

or 
align two entirely different sequences to each other



CLUSTALW- PROGRESSION

The alignment is progressively built up in 
this way, with each step being treated as a 
pairwise alignment, sometimes with each 
member of a ‘pair’ having more than one 
sequence



CLUSTALW - GOOD 
POINTS/BAD POINTS

Advantages 
Speed 

Disadvantages 
No objective function 

No way of quantifying whether or not the alignment is good 

No way of knowing if the alignment is ‘correct’ 

Potential problems: 

Local minimum problem. If an error is introduced early in the alignment 
process, it is impossible to correct this later in the procedure 

Arbitrary alignment 



CLUSTALW - INCREASING THE 
SOPHISTICATION OF THE 

ALIGNMENT PROCESS

realignment of selected sequences 

realignment of selected regions 

limited iteration of the alignment process 

pairwise alignment guided by protein secondary 
structure 

no penalty for terminal gaps



CLUSTALW- CAVEATS

Sequence weighting 

Varying substitution matrices 

Residue-specific gap penalties and reduced penalties in 
hydrophilic regions (external regions of protein 
sequences), encourage gaps in loops rather than in core 
regions 

Positions in early alignments where gaps have been 
opened receive locally reduced gap penalties to 
encourage openings in subsequent alignments



ADVICE ON PROGRESSIVE 
ALIGNMENT

Progressive alignment is a mathematical process that is completely 
independent of biological reality. 

Can be a very good estimate 

Can be an impossibly poor estimate 

Requires user input and skill 

Treat cautiously 

Can be improved by eye (usually) 

Often helps to have colour-coding 

Depending on the use, the user should be able to make a judgement on those 
regions that are reliable or not 

For phylogeny reconstruction, only use those positions whose hypothesis of 
positional homology is certain



FIVE STEPS IN BUILDING A 
PHYLOGENETIC ANALYSIS

Finding all homologs 

Multiple-sequence alignment 

Building a tree 

Statistical assessment of a tree 

Viewing a tree and drawing conclusions



MOLECULAR PHYLOGENETIC 
TREE BUILDING METHODS

COMPUTATIONAL METHOD
Clustering algorithmOptimality criterion
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PARSIMONY

MAXIMUM LIKELIHOOD

BAYESIAN INFERENCE

UPGMA

NEIGHBOR-JOINING

MINIMUM EVOLUTION

LEAST SQUARES



TYPES OF DATA USED IN 
PHYLOGENETIC INFERENCE

Character-based methods:  Use the aligned characters, such as DNA or protein sequences, 
directly during tree inference.    

     Taxa            Characters 
 Species A  ATGGCTATTCTTATAGTACG 
 Species B  ATCGCTAGTCTTATATTACA 
 Species C  TTCACTAGACCTGTGGTCCA 
 Species D  TTGACCAGACCTGTGGTCCG 
 Species E  TTGACCAGTTCTCTAGTTCG 

Distance-based methods:  Transform the sequence data into pairwise distances (dissimilarities), 
and then use the matrix during tree building.                  

A B C D E
Taxon A X 0.20 0.50 0.45 0.40
Taxon B 0.23 X 0.40 0.55 0.50
Taxon C 0.87 0.59 X 0.15 0.40
Taxon D 0.73 1.12 0.17 X 0.25
Taxon E 0.59 0.89 0.61 0.31 X

p-distances - the average 
difference per site (observed  
sequence difference)

Kimura 2-parameter distance (estimate of the true number of substitutions between taxa)



TYPES OF COMPUTATIONAL 
METHODS

Clustering algorithms: Use pairwise distances.   
These are purely algorithmic methods, in which the algorithm itself defines the tree 
selection criterion.  Tend to be very fast programs that produce singular trees rooted 
by distance.  No objective function to compare to other trees, even if numerous 
other trees could explain the data equally well.    

Warning: finding a singular tree is not necessarily the same as finding the "true” 
evolutionary tree.  

Optimality approaches:   
Use either character or distance data.  First define an optimality criterion (minimum 
branch lengths, fewest number of events, highest likelihood), and then use a specific 
algorithm for finding trees with the best value for the objective function.   Can 
identify many equally optimal trees, if such exist.   

Warning:  Finding an optimal tree is not necessarily the same as finding the "true” 
tree.   



COMPUTATIONAL METHODS 
FOR FINDING OPTIMAL TREES

Exact algorithms 
Guarantee to find the optimal or "best" tree for the method of choice.  
Two types used in tree building:  

Exhaustive search:  Evaluates all possible unrooted trees, choosing the 
one with the best score for the method. 

Branch-and-bound search:  Eliminates the parts of the search tree that 
only contain suboptimal solutions 

Heuristic algorithms  

Approximate or “quick-and-dirty” methods that attempt to find the 
optimal tree for the method of choice, but cannot guarantee to do so.  
Heuristic searches often operate by “hill-climbing” methods.   



PARSIMONY METHODS

Optimality criterion:   
The ‘most-parsimonious’ tree is the one that requires the fewest number of 
evolutionary events (e.g., nucleotide substitutions, amino acid replacements) to 
explain the sequences 

Advantages: 

Are simple, intuitive, and logical (many possible by ‘pencil-and-paper’).   

Can be used on molecular and non-molecular (e.g., morphological) data. 

Can be used for character (can infer the exact substitutions) and rate analysis. 

Can be used to infer the sequences of the extinct (hypothetical) ancestors. 

Disadvantages: 
Can be fooled by high levels of homoplasy (‘same’ events). 

Can become positively misleading in the “Felsenstein Zone” (long branch attraction)



PARSIMONY METHODS 
LONG BRANCH ATTRACTION
First time described by J. Felsenstein in 1978 (Syst. Zool. 27:401-410)

True tree
Inferred tree



MAXIMUM LIKELIHOOD 
(ML) METHODS

Optimality criterion:   

ML methods evaluate phylogenetic hypotheses in 
terms of the probability that a proposed model of 
the evolutionary process and the proposed 
unrooted tree would give rise to the observed data.  
The tree found to have the highest ML value is 
considered to be the preferred tree.  



MAXIMUM LIKELIHOOD 
(ML) METHODS

Advantages: 
Are inherently statistical and evolutionary model-based. 

Usually the most consistent of the methods available. 

Can be used for character (can infer the exact substitutions) 
and rate analysis. 

Can be used to infer the sequences of the extinct (hypothetical) 
ancestors. 

Can help account for branch-length effects in unbalanced trees. 

Can be applied to nucleotide or amino acid sequences, and 
other types of data.



MAXIMUM LIKELIHOOD 
(ML) METHODS

Disadvantages: 
Are not as simple and intuitive as many other methods. 

Are computationally very intense. 

Like parsimony, can be fooled by high levels of 
homoplasy. 

Violations of the assumed model can lead to incorrect 
trees. 

If model is wrong the inferred tree will be likely incorrect



BAYSIAN INFERENCE OF 
PHYLOGENY

Start with best guess of a tree (prior probability) 

Simulation of trees (MCMC, Markov Chain 
Monte Carlo) 

Keep all the best trees  

Posterior tree with probabilities



MINIMUM EVOLUTION 
(ME) METHODS

Optimality criterion:   
The tree(s) with the shortest sum of the branch lengths (or overall tree length) is chosen as the best 
tree. 

Advantages: 
Can be used on indirectly-measured distances (immunological, hybridization). 

Distances can be ‘corrected’ for unseen events. 

Usually faster than character-based methods. 

Can be used for some rate analyses. 

Has an objective function (as compared to clustering methods). 

Disadvantages: 
Information lost when characters transformed to distances. 

Cannot be used for character analysis. 

Slower than clustering methods.



CLUSTERING METHODS 
(UPGMA & N-J)

Optimality criterion:   
NONE.    

Advantages: 
Can be used on indirectly-measured distances (immunological, hybridization). 

Distances can be ‘corrected’ for unseen events. 

The fastest of the methods available. 

Can therefore analyze very large datasets quickly. 

 Disadvantages: 
Similarity and relationship are not necessarily the same thing, so clustering by similarity 
does not necessarily give an evolutionary tree.   

Cannot be used for character analysis! 

Have no explicit optimization criteria, so one cannot even know if the program   worked 
properly to find the correct tree for the method.



Based on precomputed pairwise distances between 
sequences according to the scoring scheme; the actual 
sequence is discarded once a distance matrix is computed  

Distance score is based on number of observed 
differences between two aligned sequences 

Pairwise alignment identity scores can be converted 
directly to distance scores; more sophisticated models 
contain heuristics to adjust for predicted number of 
multiple events at each site

DISTANCE METHODS 



DISTANCE METHODS 

Simplest distance measure = Hamming distance, number of 
changes (n) per unit sequence (N) = n/N; gaps can be 
ignored or treated as substitutions 

Assumes every change occurs only once, there are no 
duplicate changes at each site 

Can result in a zero or even negative branch length if that 
assumption is incorrect 

Alternate distance models -- e.g. probabilistic models like 
Jukes-Cantor, Kimura -- can be used to estimate 
probabilities that multiple changes have occurred at a site



MAJOR DISTANCE-BASED 
METHODS

UPGMA (Unweighted pair group method with arithmetic 
mean) is a hierarchical clustering method that assumes a 
constant molecular clock (rate of evolution) along all 
branches of the tree. 

Two closest sequences are clustered first, then next two 
closest, etc.  A rooted tree is produced. 

UPGMA assumes a molecular clock and results in a fixed (and 
error-prone) rooted tree topology.  UPGMA methods are not 
recommended unless evolutionary rates can be assumed to be 
consistent in all branches in an entire protein group.



UPGMA - ALGORITHM

Given a matrix of pairwise distances, find the clusters (taxa) i 
and j such that dij is the minimum value in the table 

Define the depth of the branching between i and j (lij) to be 
dij/2 

If i and j were the last two clusters, the tree is complete. 
Otherwise, create a new cluster called u. 

Define the distance from u to each other cluster (k, with k g i 
or j) to bean average of the distances dki and dkj. 

Go back to step 1 with one less cluster; cluster i and j have 
been eliminated, and cluster u has benn added. 



CLUSTER ANALYSIS (UPGMA) OF 5S 
rRNA EVOLUTIONARY DISTANCES 

ESTIMATES 

Bsu Bst Lvi Amo Mlu
Bacillus subtilis x 0.1715 0.2147 0.3091 0.2326
Bacillus 
stearothermophilus x 0.2991 0.3399 0.2058

Lactobacillus 
viridescens x 0.2795 0.3943

Acholeplasma 
modicum x 0.4289

Micrococcus luteus x

Data from Olsen (1988) Phylogenetic analysis using ribosomal RNA. Meth. Enzymol. 164: 793-838.

Create a cluster between two taxa with the minimum distance -  
Bsu and Bst in the example above. Recalculate distances with 
Bsu-Bst cluster as a new operational unit.



CLUSTER ANALYSIS (UPGMA) OF 5S 
rRNA EVOLUTIONARY DISTANCES 

ESTIMATES 

Bsu-Bst Lvi Amo Mlu
Bsu-Bst x 0.2569 0.3245 0.2192
Lactobacillus 
viridescens x 0.2795 0.3943

Acholeplasma modicum x 0.4289

Micrococcus luteus x

Data from Olsen (1988) Phylogenetic analysis using ribosomal RNA. Meth. Enzymol. 164: 793-838.

Create a cluster between two taxa with the minimum distance -  
Bsu-Bst and Mlu in the example above. Recalculate distances 
with Bsu-Bst-Mlu cluster as a new operational unit.



CLUSTER ANALYSIS (UPGMA) OF 5S 
rRNA EVOLUTIONARY DISTANCES 

ESTIMATES 

Bsu-Bst-Mlu Lvi Amo

Bsu-Bst-Mlu x 0.3027 0.3593

Lactobacillus viridescens x 0.2795

Acholeplasma modicum x

Data from Olsen (1988) Phylogenetic analysis using ribosomal RNA. Meth. Enzymol. 164: 793-838.

Create a cluster between two taxa with the minimum distance -  
Lvi and Amo in the example above. Recalculate distances with 
Lvi-Amo cluster as a new operational unit.



CLUSTER ANALYSIS (UPGMA) OF 5S 
rRNA EVOLUTIONARY DISTANCES 

ESTIMATES 

Bsu-Bst-Mlu Lvi

Bsu-Bst-Mlu x 0.3310

Lvi-Amo x

Data from Olsen (1988) Phylogenetic analysis using ribosomal RNA. Meth. Enzymol. 164: 793-838.

Create the last cluster. Draw the tree



CLUSTER ANALYSIS (UPGMA) OF 5S 
rRNA EVOLUTIONARY DISTANCES 

ESTIMATES - INFERRED TREE

Bsu

Bst

Mlu

Lvi

Amo



MAJOR DISTANCE-BASED 
METHOD

Neighbor-joining (NJ) is in some sense the opposite of the 
UPGMA process.  Rather than starting with closest sequence 
pairs and allowing early selections to bias the tree topology, 
NJ begins with an unresolved star-like cluster topology and 
selectively decomposes the alignment from this topology. 

Advantages:  fast, yields one tree, usually reproduces trees 
close to those produced by more computationally intensive 
methods, does not assume consistent rates of evolution in 
each branch of the tree



DISTANCE METHODS - 
CONCLUSIONS

Distance methods boil sequence data down to a single 
distance score 

By correcting that scored for multiple hits one tries to 
satisfy the additivity criterion 

For additive data NJ will work 

Otherwise ME or least-squares (FM) can be used to 
find the best tree for the distances



DIFFERENT METHODS - 
DIFFERENT RESULTS

Bst
Bsu

Mlu

Lvi

Amo

Neighbor-joining (NJ) on 5S rRNA data 



CLUSTER ANALYSIS OF 5S RRNA 
EVOLUTIONARY DISTANCES ESTIMATES 

- INFERRED UPGMA AND N-J TREES 

Bst
Bsu

Mlu

Lvi

Amo

Bsu

Bst

Mlu

Lvi

Amo



FIVE STEPS IN BUILDING A 
PHYLOGENETIC ANALYSIS

Finding all homologs 

Multiple-sequence alignment 

Building a tree 

Statistical assessment of a tree 

Viewing a tree and drawing conclusions



STATISTICAL ASSESMENT 
OF A TREE

Tests of one overall hypothesis (tree) against other 
hypotheses 

Wilson’s “winning sites” test 

Templeton’s test 

Kishino-Hasegawa ML test 

Tests of strength of support for lineages within trees 

Bootstrap 

Jack-knife 

Decay index



BOOTSTRAPING - THE MOST 
FREQUENTLY USED STATISTICAL 

TEST FOR A TREE ASSESSMENT

ATGGCTATTCTTATAGTACG 
ATCGCTAGTCTTATATTACA 
TTCACTAGACCTGTGGTCCA 
TTGACCAGACCTGTGGTCCG 
TTGACCAGTTCTCTAGTTCG

AGGGGCTAATTCTATAGTAC 
ACGGGCTAAGTCTATATTAC 
TCAAACTAAGACCGTGGTCC 
TGAAACCAAGACCGTGGTCC 
TGAAACCAAGTTCCTAGTTC

original alignment resampled alignment

1.Random sampling of columns in the original alignment to create 
a new alignment 

2.Building a tree based on the new alignment 
3.Repeat step 1 and 2 many times (usually 1000 times) 
4.Calculate how many times a given topology appears in all replicas 



BOOTSTRAPING - THE MOST 
FREQUENTLY USED STATISTICAL 

TEST FOR A TREE ASSESSMENT

 D. affinidisjuncta

 D. heteroneura

 D. adiastola

 D. mimica

 D. nigra

 S. albovittata

 D. crassifemur

 D. mulleri

 S. lebanonensis

 D. melanogaster

 D. pseudoobscura100
100

100

99

100

99

99

80

0.05 



COMPARISON OF TREE 
BUILDING METHODS

Distance based Maximum 
parsimony

Maximum 
likelihood

Uses only pairwise 
distances

Uses only shared 
derived characters Uses all data

Minimizes distance 
between nearest 

neighbors

Minimizes total 
distance

Maximizes tree 
likelihood given specific 

parameter values

Very fast Slow Very slow
Easily trapped in 

local optima
Assumptions fail when 

evolution is rapid
Highly dependent on 

assumed evolution model

Good for generating 
tentative tree

Best option when 
tractable (<30 taxa, 

homoplasy rare)

Good for very small 
data sets and for 
testing trees built 

using other methods



DIFFICULTIES WITH 
PHYLOGENETIC ANALYSIS

Horizontal or lateral transfer of genetic material (for instance 
through viruses) makes it difficult to determine phylogenetic 
origin of some evolutionary events 

Genes selective pressure can be rapidly evolving,  masking 
earlier changes that had occurred phylogenetically two sites 
within comparative sequences may be evolving at different rates 

Rearrangements of genetic material can lead to false 
conclusions  

Duplicated genes can evolve along separate pathways, leading to 
different functions



WHICH PROCEDURE 
SHOULD WE USE?

All that we can 

Each method has its own strengths 

Use multiple methods for cross-validation 

In some cases, none of the method gives the correct 
phylogeny



MORE ADVISE

Selecting a high-quality input data set is the most 
critical step in developing a phylogeny 

The order of the input set can affect results.  Good 
phylogenetics software provides tools for randomizing 
input sets 

Check for consistency by applying more than one 
method (NJ, MP, ML) to the same data set 

If you obtain an unreliable tree  

GET MORE DATA



SELECTED SOFTWARE

Kumar S, Stecher G, and Tamura K ( 2016) MEGA7: Molecular 
Evolutionary Genetics Analysis version 7.0 for bigger datasets 
Molecular Biology and Evolution 33:1870-1874 

http://www.megasoftware.net/ 

Yang, Z.  (1998)  PAML:  Phylogenetic Analysis using 
Maximum Likelihood.  

http://abacus.gene.ucl.ac.uk/software/paml.html 

PHYLIP (the PHYLogeny Inference Package)  

http://evolution.genetics.washington.edu/phylip/phylipweb.html

http://www.megasoftware.net/
http://abacus.gene.ucl.ac.uk/software/paml.html
http://evolution.genetics.washington.edu/phylip/phylipweb.html


BIOINFORMATICS CREED

Do not trust the data 

Use statistics 

Know the limits 

Remember about biology!!!


