
NANOPORE
SEQUENCING
BASECALLING

Wojciech Makałowski
Institute of Bioinformatics, University of Muenster, Germany

Department of Computational Biology, University of Tokyo, Japan
http://bioinformatics.uni-muenster.de

http://bioinformatics.uni-muenster.de

Raw data - a direct measurement of the changes in ionic
current as a DNA/RNA strand passes through the pore.
These measurements are recorded by the MinKNOW
software. MinKNOW also processes the signal into
reads, each read corresponding to a single strand of
DNA/RNA.

Basecalling - the raw signal is processed into segments
with information about current level, noise level and
duration, which correspond to the movement of the
DNA through the pore. These data are further
processed by the basecalling algorithm to generate the
base sequence of the read.

Live basecalling with MinKNOW

MinKNOW basecalling modes

Catch-up mode

Keep-up mode - requires higher computational
power usually not available with a laptop

Oxford Nanopore
basecallers

Basecaller Algorithm

MinKNOW
basecaller

Production basecaller; uses a neural network. The
algorithm is identical to the one used by Albacore, but
may be a version behind

Albacore
Production basecaller; uses a neural network. Currently
available as an executable, or as source code for members
of the Developer group

Nanonet Research basecaller; uses the latest research algorithm.
Not actively supported

Scrappie
Research basecaller; uses a neural network with a
'transducer' model, which allows the basecaller to resolve
long homopolymers. Not actively supported

Basecalling components

Event detection

Segmentation

1D basecalling

Read file location

Windows

:\data\reads on the SSD

Mac OS X

/Library/MinKNOW/data

Linux

/var/lib/MinKNOW/data

File location and name
The reads are stored in data_folder/reads, where "data_folder" is the location
that the user sets up during MinKNOW installation. This location does not
change during autoupdates, but if the software is reinstalled, the installer will
ask for the location.

The filename for a read follows a hardcoded pattern:

<output_reads_dir>/tmp/<batch_number>/
<data_set>_ch<channel_number>_read<read_number>.fast5.tmp

and if the partially completed read is not otherwise rejected, when it is
completed:

<data_folder>/reads/<basecall_status>/<batch_number>/
<data_set>_ch<channel_number>_read<read_number>_<classification>.fast5

File content
/{attributes: file_version}
|-UniqueGlobalKey/
| |-tracking_id/{attributes: asic_id, asic_id_eeprom, asic_temp,
 device_id, exp_script_hash, exp_script_name, exp_script_purpose, exp_start_time,
 flow_cell_id, heatsink_temp, hostname, protocol_run_id, protocols_version_name,
 run_id, version, version_name}
| |-channel_id/{attributes: channel_number, digitisation, offset, range,
 sampling_rate}
| |-context_tags/{attributes: set when the experiment is configured}
|-Raw/
| |-Reads/
| |-Read_42/{attributes: start_time, duration, read_number, start_mux,
 read_id, median_before}
| |-Signal{samples}
|

Albacore
Albacore is a software that
provides an entry point to the
Oxford Nanopore basecalling
algorithms.

It can be run from the
command line on Windows and
multiple unix-like platforms.

A selection of configuration files
allow basecalling DNA libraries
made with our current range of
sequencing kits and Flow Cells.

Albacore
System requirements

◦ 4 GB RAM plus 1 GB per worker thread
for 1D basecalling

◦ 4 GB RAM plus 2 GB per worker thread
for 1D2 and 2D basecalling

◦ Administrator access for installation

◦ ~100 Mb of drive space for installation,
minimum 512 GB storage space for basecalled
read files (1 TB recommended)

◦ When starting with a .fast5 file that
only has raw data in it, the file size will increase
approx. 5 times

Albacore

read_fast5_basecaller.py

main script written in
python

an entry gate to ONT
basecalling

 Flow cell Seq kit Flow cell Seq kit

read_fast5_basecaller.py -l

FLO-MIN107 SQK-RNA0
FLO-MIN107 SQK-RAD0
FLO-MIN107 SQK-RAD0
FLO-MIN107 SQK-RLI0
FLO-MIN107 SQK-LWP0
FLO-MIN107 SQK-RAS2
FLO-MIN107 SQK-LSK1
FLO-MIN107 VSK-VBK0
FLO-MIN107 SQK-DCS1
FLO-MIN107 SQK-PCS1
FLO-MIN107 SQK-RBK0
FLO-MIN107 SQK-RLB0
FLO-MIN107 SQK-LWB0
FLO-MIN107 SQK-RAB2
FLO-MIN107 SQK-LSK3

FLO-MIN106 SQK-LSK2
FLO-MIN106 SQK-NSK0
FLO-MIN106 SQK-RAD0
FLO-MIN106 SQK-RLI0
FLO-MIN106 SQK-LWP0
FLO-MIN106 SQK-RAS2
FLO-MIN106 SQK-LSK1
FLO-MIN106 VSK-VBK0
FLO-MIN106 SQK-RBK0
FLO-MIN106 SQK-RLB0
FLO-MIN106 SQK-LWB0
FLO-MIN106 SQK-RAB2
FLO-MIN106 SQK-RNA0

Basecalling example
read_fast5_basecaller.py -i 20170519_1639_170519_run -t 2
-s 20170519_1639_170519_run -o fastq,fast5 -r
-f FLO-MIN106 -k SQK-LSK208

MinION data formats
FAST5

The raw data is stored as
binary files in HDF5 standard

HDFView allows quick look at
the raw data files

https://support.hdfgroup.org/
products/java/release/
download.html#bin

MinION data formats
FASTQ

@SRR001666.1 071112_SLXA-EAS1_s_7:5:1:817:345 length=36
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACC
+
IIIIIIIIIIIIIIIIIIIIIIIIIIIIII9IG9IC

Line 1 begins with a '@' character and is followed by a sequence identifier and an optional
description

Line 2 is the raw sequence letters.

Line 3 begins with a '+' character and is optionally followed by the same sequence identifier (and
any description) again.

Line 4 encodes the quality values for the sequence in Line 2, and must contain the same number of
symbols as letters in the sequence.

Q = -10 log10 p

p = probability that the corresponding base call is incorrect

ASCII p Q
! 1 0
) 0.1 10
3 0.01 20
= 0.001 30
H 0.0001 40
~ 93

!”#$%&'() *+,-./0123 456789:;<= >?@ABCDEFGH I

MinION data formats
FASTQ

Very simple format but it may contain quite a bit in formation
on the sequence.
Used by many software including BLAST and NanoPipe

>SRR001666.1 071112_SLXA-EAS1_s_7:5:1:817:345 length=36
GGGTGATGGCCGCTGCCGATGGCGTCAAATCCCACC

MinION data formats
FASTA

